【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),∠BAC的平分線AD交⊙O于點(diǎn)D,過(guò)點(diǎn)D垂直于AC的直線交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)如果AD=5,AE=4,求AC長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)連接OD,由AD為角平分線,得到一對(duì)角相等,再由OA=OD,得到一對(duì)角相等,等量代換得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行可得AE與OD平行,由兩直線平行同旁內(nèi)角互補(bǔ),得到∠E與∠EDO互補(bǔ),再由∠E為直角,可得∠EDO為直角,即DE為圓O的切線,得證;
(2)連接BD,過(guò)點(diǎn)A作AF⊥AC,由AB為圓O的直徑,根據(jù)直徑所對(duì)的圓周角為直角,得到∠ADB為直角,在直角三角形ABD中,利用銳角三角函數(shù)定義得到cos∠DAB的值,又在直角三角形AED中,由AE及AD的長(zhǎng),利用銳角三角函數(shù)定義求出cos∠EAD的值,由∠EAD=∠DAB,得到cos∠EAD=cos∠DAB,得出cos∠DAB的值,即可求出直徑AB的長(zhǎng),由勾股定理和垂徑定理即可求出AC長(zhǎng).
試題解析:(1)連接OD,如圖1所示:
∵AD為∠CAB的平分線,
∴∠CAD=∠BAD,
又∵OA=OD,
∴∠BAD=ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴∠E+∠EDO=180°,
又∵AE⊥ED,即∠E=90°,
∴∠EDO=90°,
則ED為圓O的切線;
(2)連接BD,如圖2所示,過(guò)點(diǎn)A作AF⊥AC,
∵AB為圓O的直徑,
∴∠ADB=90°,
在Rt△ABD中,cos∠DAB=,
在Rt△AED中,AE=4,AD=5,
∴cos∠EAD=,又∠EAD=∠DAB,
∴cos∠DAB=cos∠EAD=,
則AB=AD=,即圓的直徑為,
∴AO=,
∵∠E=∠EDO=∠EFO=90°,
∴四邊形EFOD是矩形,
∴OF=DE=3,
∴AF=,
∴AC=2AF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(a,0)、C(0,b)滿足,
(1) 直接寫出:a=_________,b=_________;
(2) 點(diǎn)B為x軸正半軸上一點(diǎn),如圖1,BE⊥AC于點(diǎn)E,交y軸于點(diǎn)D,連接OE,若OE平分∠AEB,求直線BE的解析式;
(3) 在(2)的條件下,點(diǎn)M為直線BE上一動(dòng)點(diǎn),連OM,將線段OM繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°,如圖2,點(diǎn)O的對(duì)應(yīng)點(diǎn)為N,當(dāng)點(diǎn)M運(yùn)動(dòng)時(shí),判斷點(diǎn)N的運(yùn)動(dòng)路線是什么圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E是AD上一點(diǎn),連接BE,F為BE中點(diǎn),且AF=BF,
(1)求證:四邊形ABCD為矩形;
(2)過(guò)點(diǎn)F作FG⊥BE,垂足為F,交BC于點(diǎn)G,若BE=BC,S△BFG=5,CD=4,求CG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一塊矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好圍成一個(gè)容積為15m3的無(wú)蓋長(zhǎng)方體水箱,且此長(zhǎng)方體水箱的底面長(zhǎng)比寬多2米.求該矩形鐵皮的長(zhǎng)和寬各是多少米?若設(shè)該矩形鐵皮的寬是x米,則根據(jù)題意可得方程為( 。
A. (x+2)(x﹣2)×1=15 B. x(x﹣2)×1=15 C. x(x+2)×1=15 D. (x+4)(x﹣2)×1=15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列4個(gè)命題:①同旁內(nèi)角互補(bǔ);②相等的角是對(duì)頂角;③等角的補(bǔ)角相等;④兩直線平行,同位角相等.其中,假命題的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明認(rèn)為下列括號(hào)內(nèi)都可以填a4 , 你認(rèn)為使等式成立的只能是( )
A.a12=( )3
B.a12=( )4
C.a12=( )2
D.a12=( )6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品經(jīng)過(guò)連續(xù)兩次降價(jià),銷售單價(jià)由原來(lái)的125元降到80元,則平均每次降價(jià)的百分率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將點(diǎn)A(1,3)向左平移2個(gè)單位,再向下平移4個(gè)單位得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( )
A. (﹣2,0)B. (﹣2,﹣1)C. (﹣1,﹣1)D. (﹣1,0)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com