【題目】在矩形ABCD中作圖:①分別以點BC為圓心,BC長為半徑畫弧,分別交AD于點H,G;②分別以點BC為圓心,大于BC的一半長為半徑畫弧,兩弧相交于點E,F;③作直線EF,交AD于點P.下列結(jié)論不一定成立的是(

A.BCBHB.CGAD

C.PBPCD.GH2AB

【答案】D

【解析】

根據(jù)作法及矩形的性質(zhì)和垂直平分線的性質(zhì)做判斷即可.

由作法①可得:BC=BH,故A正確;

由作法①可得:CG=BC,由四邊形ABCD是矩形可得:AD=BC,所以CG=AD,故B正確;

由作法②③可得:EF垂直平分BC,所以PB=PC,故C正確;

由已知無法確定GHAB的關(guān)系,故無法確定GH是否等于2AB,可以用排除法確定答案.

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB90°,反比例函數(shù)y在第一象限的圖象經(jīng)過點B,則OA2AB2_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線軸于點,交軸于點,,點的坐標是

1)如圖1,求直線的解析式;

2)如圖2,點在第一象限內(nèi),連接,過點延長線于點,且,過點軸于點,連接,設(shè)點的橫坐標為,的而積為S,求S的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

3)如圖3,在(2)的條件下,過點軸,連接,若,時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推進傳統(tǒng)文化進校園活動,某校準備成立經(jīng)典誦讀傳統(tǒng)禮儀、民族器樂地方戲曲等四個課外活動小組.學生報名情況如圖(每人只能選擇一個小組):

1)報名參加課外活動小組的學生共有 人,將條形圖補充完整;

2)扇形圖中m= n=

3)根據(jù)報名情況,學校決定從報名經(jīng)典誦讀小組的甲、乙、丙、丁四人中隨機安排兩人到地方戲曲小組,甲、乙恰好都被安排到地方戲曲小組的概率是多少?請用列表或畫樹狀圖的方法說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西南大學附中一年一度的“繽紛節(jié)”受到社會各界的高度贊揚,20181214日西南大學附中成功舉辦了第十八屆繽紛節(jié),為成功籌辦此次繽紛節(jié),學校后勤工作人員進行了繁瑣細致地準備工作,為了搭建舞臺、后勤服務(wù)平臺和安排全校師生及家長朋友們的座位,學校需要購買鋼材1380根,購買膠板凳2300個.現(xiàn)安排A,B兩種型號的貨車共10輛運往學校,已知一輛A型貨車可以用150根鋼材和200個板凳裝滿,一輛B型貨車可以用120根鋼材和350個板凳裝滿,并且一輛A型貨車的運費為500元,一輛B型貨車的運費為520元;設(shè)運輸鋼材和板凳的總費用為y元,租用A型貨車x輛.

1)試寫出yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

2)按要求有哪幾種運輸方案,運費最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=-xb與反比例函數(shù)y (x0)的圖象交于點A(m,3)B(3,1)

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)點P(x,y)是直線AB上在第一象限內(nèi)的一個點,過點PPDx軸于點D,連接OP,令△POD的面積為S,當S>時,直接寫出點P橫坐標x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(a,0),B(0,b),且a,b滿足a22abb2(b4)20,點C為線段AB上一點,連接OC

(1)直接寫出a____,b_____;

(2)如圖1,POC上一點,連接PA,PB.若PAB0,∠BPC30°.求點P的縱坐標;

(3)如圖2,在(2)的條件下,點MAB上一動點,以OM為邊在OM的右側(cè)作等邊OMN,連接CN.若OCt,求ONCN的最小值(結(jié)果用含t的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】收發(fā)微信紅包已成為各類人群進行交流聯(lián)系,增強感情的一部分,下面是甜甜和她的雙胞胎妹妹在六一兒童節(jié)期間的對話.

請問:(12015年到2017年甜甜和她妹妹在六一收到紅包的年增長率是多少?

22017年六一甜甜和她妹妹各收到了多少錢的微信紅包?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,已知拋物線軸交于、兩點,與軸交于點,頂點坐標為點

1)求此拋物線的解析式;

2)點為拋物線對稱軸上一點,當最小時,求點坐標;

3)在第一象限的拋物線上有一點,當面積最大時,求點坐標;

4)在軸下方拋物線上有一點,面積為6,請直接寫出點的坐標.

查看答案和解析>>

同步練習冊答案