【題目】探索性問(wèn)題:

已知:b是最小的正整數(shù),且a、b滿(mǎn)足(c﹣5)2+|a+b|=0,請(qǐng)回答問(wèn)題:

(1)請(qǐng)直接寫(xiě)出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)A、B、C同時(shí)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒1個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC.

①t秒鐘過(guò)后,AC的長(zhǎng)度為   (用t的關(guān)系式表示);

請(qǐng)問(wèn):BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

【答案】(1)a=﹣1,b=1,c=5;(2)①6+4t;②BC﹣AB的值是不隨著時(shí)間t的變化而改變,其值為2.

【解析】

(1)根據(jù)b為最小的正整數(shù)求出b的值,再由非負(fù)數(shù)的和的性質(zhì)建立方程就可以求出a、b的值;
(2)①先分別表示出t秒鐘過(guò)后A、C的位置,根據(jù)數(shù)軸上兩點(diǎn)之間的距離公式就可以求出結(jié)論;
先根據(jù)數(shù)軸上兩點(diǎn)之間的距離公式分別表示出BCAB就可以得出BC-AB的值的情況.

(1)∵b是最小的正整數(shù),

∴b=1.

∵(c﹣5)2+|a+b|=0,

故答案為:a=﹣1,b=1,c=5;

(2)①由題意,得

t秒鐘過(guò)后A點(diǎn)表示的數(shù)為:﹣1﹣t,C點(diǎn)表示的數(shù)為:5+3t,

∴AC=5+3t﹣(﹣1﹣t)=6+4t;

故答案為:6+4t;

由題意,得

BC=4+2t,AB=2+2t,

∴BC﹣AB=4+2t﹣(2+2t)=2.

∴BC﹣AB的值是不隨著時(shí)間t的變化而改變,其值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(﹣4,),B(﹣1,2)是一次函數(shù)y1=ax+b與反比例函數(shù)y2=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.

(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),y1﹣y2>0?
(2)求一次函數(shù)解析式及m的值;
(3)P是線(xiàn)段AB上一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和B為圓心,以相同的長(zhǎng)(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和N,作直線(xiàn)MN交AB于點(diǎn)D,交BC于點(diǎn)E,連接CD,下列結(jié)論錯(cuò)誤的是( 。

A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,C是AB延長(zhǎng)線(xiàn)上的一點(diǎn),CD與半圓O相切于點(diǎn)D,連接AD,BD.

(1)求證:∠BAD=∠BDC;
(2)若∠BDC=28°,BD=2,求⊙O的半徑.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點(diǎn)E,AD=8cm,BC=4cm,AB=5cm.從初始時(shí)刻開(kāi)始,動(dòng)點(diǎn)P,Q 分別從點(diǎn)A,B同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,動(dòng)點(diǎn)P沿A﹣B﹣﹣C﹣﹣E的方向運(yùn)動(dòng),到點(diǎn)E停止;動(dòng)點(diǎn)Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運(yùn)動(dòng),到點(diǎn)D停止,設(shè)運(yùn)動(dòng)時(shí)間為xs,△PAQ的面積為ycm2 , (這里規(guī)定:線(xiàn)段是面積為0的三角形)

解答下列問(wèn)題:
(1)當(dāng)x=2s時(shí),y=cm2;當(dāng)x= s時(shí),y=cm2
(2)當(dāng)5≤x≤14 時(shí),求y與x之間的函數(shù)關(guān)系式.
(3)當(dāng)動(dòng)點(diǎn)P在線(xiàn)段BC上運(yùn)動(dòng)時(shí),求出 S梯形ABCD時(shí)x的值.
(4)直接寫(xiě)出在整個(gè)運(yùn)動(dòng)過(guò)程中,使PQ與四邊形ABCE的對(duì)角線(xiàn)平行的所有x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長(zhǎng)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明袋子中有1個(gè)紅球,1個(gè)綠球和n個(gè)白球,這些球除顏色外無(wú)其他差別.
(1)當(dāng)n=1時(shí),從袋中隨機(jī)摸出1個(gè)球,摸到紅球和摸到白球的可能性是否相同?(在答題卡相應(yīng)位置填“相同”或“不相同”);
(2)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回,大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,則n的值是
(3)在一個(gè)摸球游戲中,所有可能出現(xiàn)的結(jié)果如下:

根據(jù)樹(shù)狀圖呈現(xiàn)的結(jié)果,求兩次摸出的球顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的階級(jí)在數(shù)軸上表示出來(lái);
(Ⅳ)原不等式組的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:已知:如圖1,直線(xiàn)ABCD,現(xiàn)將直角三角板△PMN放入圖中,其中∠MPN=90°,點(diǎn)P始終在直線(xiàn)MN右側(cè).PMAB于點(diǎn)E,PNCD于點(diǎn)F,試探究:∠PFD與∠AEM的數(shù)量關(guān)系.

(1)特例如圖2,當(dāng)點(diǎn)P在直線(xiàn)AB上(即點(diǎn)E與點(diǎn)P重合)時(shí),直接寫(xiě)出∠PFD與∠AEM的數(shù)量關(guān)系,不必證明;

(2)類(lèi)比探究:如圖1,當(dāng)點(diǎn)PABCD之間時(shí),猜想∠PFD與∠AEM的數(shù)量關(guān)系,并說(shuō)明理由;

(3)拓展延伸:如圖3,當(dāng)點(diǎn)P在直線(xiàn)AB的上方時(shí),PNAB于點(diǎn)H,其他條件不變,猜想∠PFD與∠AEM的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案