【題目】如圖,已知一條東西走向的河流,在河流對岸有一點A,小明在岸邊點B處測得點A在點B的北偏東30°方向上,小明沿河岸向東走80m后到達(dá)點C,測得點A在點C的北偏西60°方向上,則點A到河岸BC的距離為 .
【答案】20 米
【解析】方法1、過點A作AD⊥BC于點D.
根據(jù)題意,∠ABC=90°﹣30°=60°,∠ACD=30°,
設(shè)AD=x米,
在Rt△ACD中,tan∠ACD= ,
∴CD= = = x,
在Rt△ABD中,tan∠ABC= ,
∴BD= = = x,
∴BC=CD+BD= x+ x=80
∴x=20
答:該河段的寬度為20 米.
故答案是:20 米.
方法2、過點A作AD⊥BC于點D.
根據(jù)題意,∠ABC=90°﹣30°=60°,∠ACD=30°,
∴∠BAC=180°﹣∠ABC﹣∠ACB=90°,
在Rt△ABC中,BC=80m,∠ACB=30°,
∴AB=40m,AC=40 m,
∴S△ABC= AB×AC= ×40×40 =800 ,
∵S△ABC= BC×AD= ×80×AD=40AD=800 ,
∴AD=20 米
答:該河段的寬度為20 米.
故答案是:20 米.
【考點精析】根據(jù)題目的已知條件,利用三角形的面積和銳角三角函數(shù)的定義的相關(guān)知識可以得到問題的答案,需要掌握三角形的面積=1/2×底×高;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時間x(h)之間的函數(shù)關(guān)系.請根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了 h;
(2)求線段DE對應(yīng)的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點,A,C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行,若乙的速度是甲的速度的4倍,則它們第2019次相遇在______邊上(填AB,BC,CD或AD).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推動“龍江經(jīng)濟帶”建設(shè),我省某蔬菜企業(yè)決定通過加大種植面積、增加種植種類,促進經(jīng)濟發(fā)展.2017年春,預(yù)計種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經(jīng)預(yù)算,種植西紅柿的利潤可達(dá)1萬元/公頃,青椒1.5萬元/公頃,馬鈴薯2萬元/公頃,設(shè)種植西紅柿x公頃,總利潤為y萬元.
(1)求總利潤y(萬元)與種植西紅柿的面積x(公頃)之間的關(guān)系式.
(2)若預(yù)計總利潤不低于180萬元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過獲得最大利潤的 在冬季同時建造A、B兩種類型的溫室大棚,開辟新的經(jīng)濟增長點,經(jīng)測算,投資A種類型的大棚5萬元/個,B種類型的大棚8萬元/個,請直接寫出有哪幾種建造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.
求證:∠C=∠D.
證明:因為∠1=∠2(已知),∠1=∠3( )
得∠2=∠3( )
所以AE//_______( )
得∠4=∠F( )
因為__________(已知)
得∠4=∠A
所以______//_______( )
所以∠C=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖一,若△ABC是等邊三角形,且AB=AC=2,點D在線段BC上,
①求證:∠BCE+∠BAC=180°;
②當(dāng)四邊形ADCE的周長取最小值時,求BD的長.
(2)若∠BAC60° ,當(dāng)點D在射線BC上移動,則∠BCE和∠BAC 之間有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點D在y軸上,點E在x軸上,在△ABC中,點A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):
(1)將△ODE繞O點按逆時針方向旋轉(zhuǎn)90°得到△OMN(其中點D的對應(yīng)點為點M,點E的對應(yīng)點為點N),畫出△OMN;
(2)將△ABC沿x軸向右平移得到△A′B′C′(其中點A,B,C的對應(yīng)點分別為點A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
(3)求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下面兩個定理:
①線段垂直平分線上的點到這條線段兩個端點的距離相等;
②到一條線段兩個端點距離相等的點在這條線段的垂直平分線上.
應(yīng)用上述定理進行如下推理:
如圖,直線l是線段MN的垂直平分線.
∵點A在直線l上,∴AM=AN.( )
∵BM=BN,∴點B在直線l上.( )
∵CM≠CN,∴點C不在直線l上.
這是∵如果點C在直線l上,那么CM=CN, ( )
這與條件CM≠CN矛盾.
以上推理中各括號內(nèi)應(yīng)注明的理由依次是 ( )
A. ②①① B. ②①②
C. ①②② D. ①②①
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com