【題目】最近,“校園安全”受到全社會(huì)的廣泛關(guān)注,重慶一中學(xué)生會(huì)新聞社準(zhǔn)備近期做一個(gè)關(guān)于“校園安全”的?疄榱私馔瑢W(xué)們對“校園安全”知識(shí)的了解程度,決定隨機(jī)抽取部分同學(xué)進(jìn)行一次問卷調(diào)查,問卷將了解程度分為(了解)、(了解很少)、(基本了解)、(不了解)四種類型,根據(jù)調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖信息解答下列問題:
(1)這次調(diào)查中,一共調(diào)查了 名學(xué)生,圖中類所對應(yīng)的圓心角度數(shù)為 ;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)為了讓全校師生都能更好地關(guān)注“校園安全”,學(xué)生會(huì)準(zhǔn)備組織一次宣講活動(dòng),由問卷調(diào)查中“了解”的幾名同學(xué)組成一個(gè)宣講團(tuán).已知這幾名同學(xué)中有四名來自初一,其中兩名為男生;另外四名來自初二,其中一名為女生.若要在該宣講團(tuán)中分別抽取初一、初二各一名同學(xué)在全校師生大會(huì)上作代表發(fā)言,請用列表法或畫樹狀圖的方法求出恰好抽到一名男生和一名女生來發(fā)言的概率.
【答案】(1)40;72°;(2)詳見解析;(3).
【解析】
(1)由D的人數(shù)除以占的百分比得出調(diào)查學(xué)生的總數(shù)即可;求出C的人數(shù)占的百分比,乘以360即可得到結(jié)果;
(2)求出C的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;
(3)列表得出所有等可能的情況數(shù),找出一男一女的情況數(shù),即可確定出所求概率.
(1)這次調(diào)查中,一共調(diào)查了 40 名學(xué)生;
圖1中類所對應(yīng)的圓心角度數(shù)為 72° ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖如下:
(3)設(shè):初一兩名男生為B1、B2,兩名女生為A1、A2,初二男生為B3,B4,B5,女生為A3
B1 | B2 | A1 | A2 | |
B3 | (B1,B3) | (B2,B3) | (A1,B3) | (A2,B3) |
B4 | (B1,B4) | (B2,B4) | (A1,B4) | (A2,B4) |
B5 | (B1,B5) | (B2,B5) | (A1,B5) | (A2,B5) |
A3 | (B1,A3) | (B2,A3) | (A1,A3) | (A2,A3)> |
∴總共有16種等可能情況,且一男一女的情況有8種.............8分
∴P(一男一女)=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競賽,為獎(jiǎng)勵(lì)在競賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個(gè),但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某開發(fā)區(qū)有一塊四邊形的空地,如圖所示,現(xiàn)計(jì)劃在空地上種植草皮,經(jīng)測量,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,DE⊥AD,交AB于點(diǎn)E,AE為⊙O的直徑
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線: 與x軸、y軸分別交于A、B兩點(diǎn),直線與x軸、y軸分別交于C、兩點(diǎn),且︰︰.
(1)求直線的解析式,并判斷的形狀;
(2)如圖,為直線上一點(diǎn),橫坐標(biāo)為,為直線上一動(dòng)點(diǎn),當(dāng)最小時(shí),將線段沿射線方向平移,平移后、的對應(yīng)點(diǎn)分別為、,當(dāng)最小時(shí),求點(diǎn)的坐標(biāo);
(3)如圖,將沿著軸翻折,得到,再將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)()得到,直線與直線、軸分別交于點(diǎn)、.當(dāng)為等腰三角形時(shí),請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△EFG≌△NMH, ∠F與∠M是對應(yīng)角.
(1)寫出相等的線段與相等的角;
(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長都是1.請同學(xué)們利用網(wǎng)格線進(jìn)行畫圖:
(1)在圖1中,畫一個(gè)頂點(diǎn)為格點(diǎn)、面積為5的正方形;
(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)
(3)在圖3中,找一格點(diǎn)D,滿足:①到CB、CA的距離相等;②到點(diǎn)A、C的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是( )
A. 2.4 B. 4.8 C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com