如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于點A(m,2),點B(-2, n ),一次函數(shù)圖像與y軸的交點為C.求△AOC的面積。

解析試題分析:首先由反比例函數(shù)的解析式分別求得m、n的值,再進(jìn)一步根據(jù)點A、B的坐標(biāo)求得一次函數(shù)的解析式;令x=0,即可求得點C的坐標(biāo);根據(jù)點A、C的坐標(biāo)即可求得OC=1,OC邊上的高是點A的橫坐標(biāo),進(jìn)一步求得三角形的面積.
試題解析:由題意,把A(m,2),B(-2,n)代入中,得,,
∴A(1,2),B(-2,-1)
將A、B代入中得:
,

∴一次函數(shù)解析式為:;
當(dāng)x=0時,y=1,
∴C(0,1);

考點:(1)一次函數(shù);(2)反比例函數(shù);(3)三角形面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(2,2),反比例函數(shù)(x>0,k≠0)的圖像經(jīng)過線段BC的中點D.
⑴求k的值;
⑵若點P(x,y)在該反比例函數(shù)的圖像上運動(不與點D重合),過點P作PR⊥y軸于點R,作PQ⊥BC所在直線于點Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示是某一蓄水池的排水速度h)與排完水池中的水所用的時間t(h)之間的函數(shù)關(guān)系圖象.

(1)請你根據(jù)圖象提供的信息求出此蓄水池的蓄水量;
(2)寫出此函數(shù)的解析式;
(3)若要6 h排完水池中的水,那么每小時的排水量應(yīng)該是多少?
(4)如果每小時排水量是,那么水池中的水要用多少小時排完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系的第一象限中,有一各邊所在直線均平行于坐標(biāo)軸的矩形ABCD,且點A在反比例函數(shù)L1:y= (x>0) 的圖象上,點C在反比例函數(shù)L2:y= (x>0) 的圖象上(矩形ABCD夾在L1與L2之間).(1)若點A坐標(biāo)為(1,1)時,則L1的解析式為              .(2)在(1)的條件下,若矩形ABCD是邊長為1的正方形,求L2的解析式.(3)若k1=1,k2=6,且矩形ABCD的相鄰兩邊分別為1和2,求符合條件的頂點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知一次函數(shù)(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),)的圖象相交于點 A(1,3).

(1)求這兩個函數(shù)的解析式及其圖象的另一交點的坐標(biāo);
(2)觀察圖象,寫出使函數(shù)值的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線,經(jīng)過點P(,),點P關(guān)于軸的對稱點P′在反比例函數(shù))的圖象上.

(1)求的值;
(2)直接寫出點P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,一次函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點
(1)求的值及反比例函數(shù)的表達(dá)式;
(2)判斷點是否在該反比例函數(shù)的圖象上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點B(m,2).

(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某食品加工廠要把600噸方便面包裝后送往災(zāi)區(qū)。
(1)寫出包裝所需的天數(shù)t天與包裝速度 y 噸/天的函數(shù)關(guān)系式;
(2)包裝車間有包裝工120名,每天最多包裝60噸,預(yù)計最快需要幾天才能包裝完?
(3)包裝車間連續(xù)工作7天后,為更快地幫助災(zāi)區(qū)群眾,廠方?jīng)Q定在2天內(nèi)把剩余的方便面全部包裝完畢,問需要調(diào)來多少人支援才能完成任務(wù)?

查看答案和解析>>

同步練習(xí)冊答案