矩形ABCD中, 點F在邊AD上,過點F作CF⊥EF交AB于點E,AF="CD," 連接BF、CE交于點H,且滿足CH=HF+EH.

(1)求證:△AFE≌△DCF.
(2)求證:∠AFE=2∠EFH.)
通過全等三角形的求證規(guī)則求證;等邊三角形的變換,轉(zhuǎn)化

試題分析:證明:(1)∵CF⊥EF

,且

有知,AF=CD,
∴△AFE≌△DCF(ASA)                              4分
(2) 在矩形ABCD中,有AB=CD

∴AB=AF

在線段CH上截取點M,使HM=HF,連接FM。
∵CH=HF+EH
∴FH=HM
,HM=HF

∴△HFE≌△MFC(AAS)
∴FH=FM
∴FH=FM=HM
∴△HFM為等邊三角形



∴∠AFE=2∠EFH    
點評:解答本題的關(guān)鍵是熟練掌握判定兩個三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

一個周長20 cm的菱形,有一個內(nèi)角為60°,其較短的對角線長為    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

ABCD中,若∠A+∠C=200°,則∠D=__ °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=30m,BC=120m,CD=130m,DA=40m,若植草皮的單價為30元/m2,問:將這塊空地植滿草皮,開發(fā)區(qū)需要投入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于的長為半徑在AC兩邊作弧,交于兩點M、N;②作直線MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.

(1)求證:四邊形ADCE是菱形;
(2)當∠ACB90°,BC6,AB10,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,□ABCD中,∠ABC的平分線交AD于E,
∠CDA的平分線交BC于F.

(1)求證:△ABE≌△CDF;(2)連接EF、BD,求證:EF與BD互相平分.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在正方形ABCD中,過點A引射線AH,交邊CD于點H(點H與點D不重合).通過翻折,使點B落在射線AH上的點G處,折痕AE交BC于E,延長EG交CD于F.
【感知】如圖1,當點H與點C重合時,可得FG=FD.

【探究】如圖2,當點H為邊CD上任意一點時,猜想FG與FD的數(shù)量關(guān)系,并說明理由.

【應(yīng)用】在圖2中,當AB=5,BE=3時,利用探究結(jié)論,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形的兩條對角線分別長6和8,點是對角線上的一個動點,點分別是邊的中點,則的最小值是_____________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE. 已知∠BAC=30º,EF⊥AB,垂足為F,連結(jié)DF.

(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形。

查看答案和解析>>

同步練習冊答案