【題目】某市在城中村改造中,需要種植、兩種不同的樹苗共棵,經(jīng)招標,承包商以萬元的報價中標承包了這項工程,根據(jù)調(diào)查及相關資料表明, 、兩種樹苗的成本價及成活率如表:
品種 | 購買價(元/棵) | 成活率 |
設種植種樹苗棵,承包商獲得的利潤為元.
()求與之間的函數(shù)關系式.
()政府要求栽植這批樹苗的成活率不低于,承包商應如何選種樹苗才能獲得最大利潤?最大利潤是多少?
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,拋物線y1=ax2+bx(a≠0),與x軸正半軸交于點A1(2,0),頂點為P1 , △OP1A1為正三角形,現(xiàn)將拋物線y1=ax2+bx(a≠0)沿射線OP1平移,把過點A1時的拋物線記為拋物線y2 , 記拋物線y2與x軸的另一交點為A2;把拋物線y2繼續(xù)沿射線OP1平移,把過點A2時的拋物線記為拋物線y3 , 記拋物線y3與x軸的另一交點為A3;….;把拋物線y2015繼續(xù)沿射線OP1平移,把過點A2015時的拋物線記為拋物線y2016 , 記拋物線y2016與x軸的另一交點為A2016 , 頂點為P2016 . 若這2016條拋物線的頂點都在射線OP1上.
(1)①求△OP1A1的面積;②求a,b的值;
(2)求拋物線y2的解析式;
(3)請直接寫出點A2016以及點P2016坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD是一張邊長為12公分的皮革.皮雕師傅想在此皮革兩相鄰的角落分別切下△PDQ與△PCR后得到一個五邊形PQABR,其中PD=2DQ,PC=RC,且P、Q、
R三點分別在CD、AD、BC上,如圖所示.
(1)當皮雕師傅切下△PDQ時,若DQ長度為x公分,請你以x表示此時△PDQ的面積.
(2)承(1),當x的值為多少時,五邊形PQABR的面積最大?請完整說明你的理由并求出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知數(shù)軸上兩點A,B對應的數(shù)分別是﹣1,3,點P為數(shù)軸上的一動點,其對應的數(shù)為x
(1)A、B兩點的距離AB= ;
(2)在數(shù)軸上是否存在點P,使PA+PB=6?若存在,請求出x的值;若不存在,請說明理由.
(3)如圖2,若點P以每秒1個單位的速度從點O出發(fā)向右運動,同時點A以每秒5個單位的速度向左運動,點B以每秒20個單位的速度向右運動,在運動的過程中,M、N分別是AP、OB的中點,問:的值是否發(fā)生變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、C在雙曲線上,點 B、D在雙曲線上,AD// BC//y 軸.
(I)當m=6,n=-3,AD=3 時,求此時點 A 的坐標;
(II)若點A、C關于原點O對稱,試判斷四邊形 ABCD的形狀,并說明理由;
(III)若AD=3,BC=4,梯形ABCD的面積為,求mn 的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2018的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017·河北遷安一模)如圖,在Rt△ABC中,直角邊AC=7 cm,BC=3 cm,CD為斜邊AB上的高,點E從點B出發(fā)沿直線BC以2 cm/s的速度移動,過點E作BC的垂線交直線CD于點F.
(1)試說明:∠A=∠BCD;
(2)點E運動多長時間,CF=AB?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com