【題目】某種產(chǎn)品的年產(chǎn)量不超過(guò)1 000t,該產(chǎn)品的年產(chǎn)量(t)與費(fèi)用(萬(wàn)元)之間的函數(shù)關(guān)系如圖(1);該產(chǎn)品的年銷(xiāo)售量(t)與每噸銷(xiāo)售價(jià)(萬(wàn)元)之間的函數(shù)關(guān)系如圖(2).若生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷(xiāo)售完,則年產(chǎn)量為多少?lài)崟r(shí),當(dāng)年可獲得7500萬(wàn)元毛利潤(rùn)?(毛利潤(rùn)=銷(xiāo)售額﹣費(fèi)用)

【答案】解:設(shè)年產(chǎn)量為t噸,費(fèi)用為y(萬(wàn)元),每噸銷(xiāo)售價(jià)為z(萬(wàn)元),則0≤t≤1000,

由圖(1)可求得y=10t,

由圖(2)求得z=﹣ t+30.

設(shè)毛利潤(rùn)為w(萬(wàn)元),

則w=tz﹣y=t(﹣ t+30)﹣10t=﹣ t2+20t.

∴﹣ t2+20t=7500,

∴t2﹣2000t+750000=0,

解得t1=500,t2=1500(不合題意,舍去).

故年產(chǎn)量是500噸時(shí),當(dāng)年可獲得7500萬(wàn)元毛利潤(rùn).


【解析】(1)先觀察函數(shù)圖像,根據(jù)圖像上的點(diǎn)的坐標(biāo),利用待定系數(shù)法求出兩函數(shù)的解析式。然后設(shè)毛利潤(rùn)為w(萬(wàn)元),根據(jù)毛利潤(rùn)=銷(xiāo)售額﹣費(fèi)用。得出w=tz﹣y,列出w與t的函數(shù)關(guān)系式,根據(jù)w=7500,建立方程求解,再根據(jù)某種產(chǎn)品的年產(chǎn)量不超過(guò)1 000噸,得出t的值。,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)為了開(kāi)展球類(lèi)興趣小組,需要購(gòu)買(mǎi)一批足球和籃球﹒若購(gòu)買(mǎi)3個(gè)足球和5個(gè)籃球需580元;若購(gòu)買(mǎi)4個(gè)足球和3個(gè)籃球需480元.

1)求出足球和籃球的的單價(jià)分別是多少?

2)已知該年級(jí)決定用800元購(gòu)進(jìn)這兩種球,若兩種球都要有,請(qǐng)問(wèn)有幾種購(gòu)買(mǎi)方案,并請(qǐng)加以說(shuō)明﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點(diǎn)D,以AD為邊作等邊△ADE,延長(zhǎng)ED交BC于點(diǎn)F,BC=2 ,則圖中陰影部分的面積為 . (結(jié)果不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 內(nèi)接于 , 是直徑,點(diǎn) 上, ,過(guò)點(diǎn) ,垂足為 ,連接 邊于點(diǎn)

(1)求證: ;
(2)求證: ;
(3)連接 ,設(shè) 的面積為 ,四邊形 的面積為 ,若 ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,∠ABE=∠AEB,AE∥DF,DC∠ADF的角平分線(xiàn).下列說(shuō)法正確的是( 。

①BE=CF ②AE∠DAB的角平分線(xiàn) ③∠DAE+∠DCF=120°.

A. B. ①② C. ①②③ D. 都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為( )

A.2
B.2.5或3.5
C.3.5或4.5
D.2或3.5或4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊長(zhǎng)方形場(chǎng)地ABCD的長(zhǎng)AB與寬AD的比為2∶1,DE⊥AC于點(diǎn)E,BF⊥AC于點(diǎn)F,連結(jié)BE,DF,則四邊形DEBF與長(zhǎng)方形ABCD的面積比為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,點(diǎn)E分別是AB,AC的中點(diǎn),點(diǎn)F是DE上一點(diǎn),∠AFC=90°,BC=10cm,AC=6cm,則DF=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式中:

3x=﹣4系數(shù)化為1x=﹣;

52x移項(xiàng)得x52;

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括號(hào)得4x23x91

其中正確的個(gè)數(shù)有( 。

A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案