【題目】如果三角形的一個外角等于和它相鄰的內(nèi)角的4倍,等于與它不相鄰的一個內(nèi)角的2倍,則此三角形各內(nèi)角的度數(shù)是_____________.
【答案】72°、72°、36°
【解析】
此題先根據(jù)已知三角形的一個外角等于與它相鄰的內(nèi)角的4倍,互為鄰補角的兩個角和為180°,從而求出這個外角與它相鄰的內(nèi)角的度數(shù)為144°、36°.又知這個外角還等于與它不相鄰的一個內(nèi)角的2倍,所以可以得到這兩個與它不相鄰的內(nèi)角分別為:72°、72°,則這個三角形各角的度數(shù)分別是36°,72°,72°.
∵三角形的一個外角等于與它相鄰的內(nèi)角的4倍,
∴可設(shè)這一內(nèi)角為x,則它的外角為4x,
∴有
則
又∵這個外角還等于與它不相鄰的一個內(nèi)角的2倍,
∴這兩個與它不相鄰的內(nèi)角分別為:72°、72°.
∴這個三角形各角的度數(shù)分別是72°、72°、36°.
故答案為:72°、72°、36°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(1,0),B(4,0),C(0,﹣4)三點,點D是直線BC上方的拋物線上的一個動點,連結(jié)DC,DB,則△BCD的面積的最大值是( )
A.7
B.7.5
C.8
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
我們知道:一條線段有兩個端點,線段和線段表示同一條線段. 若在直線上取了三個不同的點,則以它們?yōu)槎它c的線段共有 條;若取了四個不同的點,則共有線段 條;…;依此類推,取了個不同的點,共有線段條.(用含的代數(shù)式表示)
類比探究:
以一個銳角的頂點為端點向這個角的內(nèi)部引射線.
(1)若引出兩條射線,則所得圖形中共有 個銳角;
(2)若引出條射線,則所得圖形中共有 個銳角.(用含的代數(shù)式表示)
拓展應(yīng)用:
一條鐵路上共有8個火車站,若一列火車往返過程中必須?棵總車站,則鐵路局需為這條線路準備多少種車票?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個箱子里放有1個白球和2個紅球,它們除顏色外其余都相同.
(1)判斷下列甲乙兩人的說法,認為對的在后面括號內(nèi)答“√”,錯的打“×”.
甲:“從箱子里摸出一個球是白球或者紅球”這一事件是必然事件;
乙:從箱子里摸出一個球,記下顏色后放回,攪勻,這樣連續(xù)操作三次,其中必有一次摸到的是白球;
(2)小明說:從箱子里摸出一個球,不放回,再摸出一個球,則“摸出的球中有白球”這一事件的概率為 ,你認同嗎?請畫樹狀圖或列表計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時間t(小時)之間的關(guān)系如圖所示.
(1)求張師傅加油前油箱剩余油量y(升)與行駛時間t(小時)之間的關(guān)系式;
(2)求出a的值;
(3)求張師傅途中加油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在△ABC中,已知∠ABC、∠ACB的平分線相交于點O,過點O作EF∥BC交AB、AC于E、F.請寫出圖中的等腰三角形,并找出EF與BE、CF間的關(guān)系;
(2) 如圖②中∠ABC的平分線與三角形ABC的外角∠ACG的平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.圖中有等腰三角形嗎?如果有,請寫出來.EF與BE、CF間的關(guān)系如何?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平整的桌面上,有若干個棱長為的小正方體堆成一個幾何體,如圖所示
(1)分別畫出這個幾何體從上面、左面看到的圖形;
(2)如果把露在外面的面都涂上顏色,求涂上顏色的面的面積;
(3)若你手里還有一些相同的小正方體,如果保持從上面、左面看到的圖形不變,最多可以再添加幾個小正方體?直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為以AB為直徑的⊙O上一點,AD和過點C的切線互相垂直,垂足為點D.
(1)求證:AC平分∠BAD;
(2)若CD=3,AC=5,求⊙O的半徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com