【題目】如圖,在△ABC中,∠A=∠C,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)度,得到△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于點(diǎn)D、F,下列結(jié)論:①∠CDF=,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中正確的是___________________(寫(xiě)出正確結(jié)論的序號(hào)).
【答案】①②⑤
【解析】
①兩個(gè)不同的三角形中有兩個(gè)角相等,那么第三個(gè)角也相等;
②根據(jù)ASA進(jìn)而得出△A1BF≌△CBE,即可得出A1E=CF;
③∠CDF=α,而∠C與順時(shí)針旋轉(zhuǎn)的度數(shù)不一定相等,所以DF與FC不一定相等;
④AE不一定等于CD,則AD不一定等于CE,
⑤用角角邊可證明△A1BF≌△CBE后可得A1F=CE.
∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度,得到△A1BC1,
∴∠CBC1=α,∠C=∠C1,
∵∠BFC1=∠DFC,
∴∠CDF=∠CBC1=α,故①正確,
∵AB=BC,
∴∠A=∠C,
∴∠C=∠A1
在△A1BF和△CBE中,
∠C=∠A1,A1B=BC,∠A1BF=∠CBE,
∴△A1BF≌△CBE,
∴BE=BF,A1F=CE,故⑤正確,
∵A1B=BC,
∴A1B-BE=BC-BF,即A1E=CF,故②正確,
∵∠CDF=α,α是可變化的角,∠C是固定角,
∴∠CDF不一定等于∠C,
∴DF不一定等于CF,故③錯(cuò)誤,
∵AE不一定等于CD,
∴AD不一定等于CE,故④錯(cuò)誤.
綜上所述:①②⑤正確,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在Rt△ABC中,∠C=90°,AC=BC,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在BE的延長(zhǎng)線上,AD⊥BE。
(1)求證:∠DAE+∠ABE=45°
(2)若BE=6,求AD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x滿足(x-4) (x-9)=6,求(x-4)2+(x-9)2的值.
解:設(shè)x-4=a,x-9=b,則(x-4)(x-9)=ab=6,a-b=(x-4)-(x-9)=5,
∴(x-4)2+(x-9)2=a2+b2=(a-b)2+2ab=52+2×6=37
請(qǐng)仿照上面的方法求解下面問(wèn)題:
(1)若x滿足(x-2)(x-5)=10,求(x-2)2 + (x-5)2的值
(2)已知正方形ABCD的邊長(zhǎng)為x,E,F分別是AD、DC上的點(diǎn),且AE=1,CF=3,長(zhǎng)方形EMFD的面積是15,分別以MF、DF作正方形,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=x的圖象與函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)A、B(2,m)兩點(diǎn).
(1)請(qǐng)求出函數(shù)y=的解析式;
(2)請(qǐng)根據(jù)圖象判斷當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的取值范圍;
(3)點(diǎn)C是函數(shù)y=在第一象限圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)OBC的面積為3時(shí),請(qǐng)求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線過(guò)點(diǎn)和,點(diǎn)P為x軸正半軸上的一個(gè)動(dòng)點(diǎn),連接AP,在AP右側(cè)作,且,點(diǎn)B經(jīng)過(guò)矩形AOED的邊DE所在的直線,設(shè)點(diǎn)P橫坐標(biāo)為t.
求拋物線解析式;
當(dāng)點(diǎn)D落在拋物線上時(shí),求點(diǎn)P的坐標(biāo);
若以A、B、D為頂點(diǎn)的三角形與相似,請(qǐng)直接寫(xiě)出此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:過(guò)外一點(diǎn)C作直徑AF,垂足為E,交弦AB于D,若,則
判斷直線BC與的位置關(guān)系,并證明;
為OA中點(diǎn),,,請(qǐng)直接寫(xiě)出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | 0 | 1 | 2 | ||||
y | 0 | 4 | 6 | 6 | 4 |
小聰觀察上表,得出下面結(jié)論:拋物線與x軸的一個(gè)交點(diǎn)為;函數(shù)的最大值為6;拋物線的對(duì)稱軸是;在對(duì)稱軸左側(cè),y隨x增大而增大其中正確有
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司準(zhǔn)備把240噸白砂糖運(yùn)往、兩地,用大、小兩種貨車(chē)共20輛,恰好能一次性裝完這批白砂糖,相關(guān)數(shù)據(jù)見(jiàn)下表:
載重量 | 運(yùn)往地的費(fèi)用 | 運(yùn)往地的費(fèi)用 | |
大車(chē) | 15噸/輛 | 650元/輛 | 700元/輛 |
小車(chē) | 10噸/輛 | 400元/輛 | 500元/輛 |
(1)求大、小兩種貨車(chē)各用多少輛?
(2)如果安排10輛貨車(chē)前往地,其中大車(chē)有輛,其余貨車(chē)前往地,且運(yùn)往地的白砂糖不少于130噸.
①的取值范圍;
②請(qǐng)?jiān)O(shè)計(jì)出總運(yùn)費(fèi)最少的貨車(chē)調(diào)配方案,并求最少總運(yùn)費(fèi).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com