用配方法解一元二次方程x2﹣6x﹣4=0,下列變形正確的是( 。
| A. | (x﹣6)2=﹣4+36 | B. | (x﹣6)2=4+36 | C. | (x﹣3)2=﹣4+9 | D. | (x﹣3)2=4+9 |
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省濱?h八年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知一次函數(shù)和的圖象交于點(-4,-2),則二元一次方程組的解是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題探究】
(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說明理由.
【深入探究】
(2)如圖2,四邊形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的長.
(3)如圖3,在(2)的條件下,當△ACD在線段AC的左側(cè)時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知正方形ABCD的邊長為2,E是邊BC上的動點,BF⊥AE交CD于點F,垂足為G,連結(jié)CG.下列說法:①AG>GE;②AE=BF;③點G運動的路徑長為π;④CG的最小值為﹣1.其中正確的說法是 .(把你認為正確的說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在“綠滿鄂南”行動中,某社區(qū)計劃對面積為1800m2的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積.
(2)設(shè)甲工程隊施工x天,乙工程隊施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)解析式.
(3)若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過26天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O是正五邊形ABCDE的外接圓,這個正五邊形的邊長為a,半徑為R,邊心距為r,則下列關(guān)系式錯誤的是( 。
| A. | R2﹣r2=a2 | B. | a=2Rsin36° | C. | a=2rtan36° | D. | r=Rcos36° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在長方形ABCD中AB=16,如圖所示裁出一扇形ABE,將扇形圍成一個圓錐(AB和AE重合),則此圓錐的底面半徑為( 。
| A. | 4 | B. | 16 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD為菱形,對角線AC,BD相交于點E,F(xiàn)是邊BA延長線上一點,連接EF,以EF為直徑作⊙O,交DC于D,G兩點,AD分別于EF,GF交于I,H兩點.
(1)求∠FDE的度數(shù);
(2)試判斷四邊形FACD的形狀,并證明你的結(jié)論;
(3)當G為線段DC的中點時,
①求證:FD=FI;
②設(shè)AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com