【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△AB′C′,則圖中陰影部分的面積是 .
【答案】
【解析】解:∵∠C=90°,∠ABC=30°, ∴∠CAB=60°,AB=2AC=2,
BC= AC= ,
∵Rt△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△AB′C′,
∴AC′=AC=1,AB′=AB=2,B′C′=BC= ,∠B′AB=30°,∠C′AB′=∠CAB=60°,
∴∠C′AD=∠C′AB′∠BAB′=30°,
在Rt△AC′D中,∵∠C′AD=30°,
∴C′D= AC′= ,
∴B′D=B′C′﹣C′D= ﹣ = ,
∴圖中陰影部分的面積=S扇形BAB′﹣S△ADB′
= ﹣ × ×1
= .
所以答案是: .
【考點精析】根據(jù)題目的已知條件,利用扇形面積計算公式和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2);①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司推銷一種產(chǎn)品,設(shè)x(件)是推銷產(chǎn)品的數(shù)量,y(元)是付給推銷員的月報酬.公司付給推銷員的月報酬的兩種方案如圖所示,推銷員可以任選一種與公司簽訂合同,看圖解答下列問題:
(1)求每種付酬方案y關(guān)于x的函數(shù)表達式;
(2)當(dāng)選擇方案一所得報酬高于選擇方案二所得報酬時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,過點D作對角線BD的垂線,交BC的延長線于點E,取BE的中點F,連接DF,DF=4,設(shè)AB=x,AD=y,求x2+(y﹣4)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】谷歌人工智能AlphaGo機器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關(guān)注,人工智能完勝李世石.某教學(xué)網(wǎng)站開設(shè)了有關(guān)人工智能的課程并策劃了A,B兩種網(wǎng)上學(xué)習(xí)的月收費方式:
收費 方式 | 月使用費(元) | 包時上網(wǎng) 時間(h) | 超時費(元/min) |
A | 7 | 25 | 0.6 |
B | 10 | 50 | 0.8 |
設(shè)小明每月上網(wǎng)學(xué)習(xí)人工智能課程的時間為x小時,方案A,B的收費金額分別為yA元,yB元.
(1)當(dāng)x≥50時,分別求出yA,yB與x之間的函數(shù)關(guān)系式;
(2)若小明3月份上該網(wǎng)站學(xué)習(xí)的時間為60小時,則他選擇哪種方式上網(wǎng)學(xué)習(xí)合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣4,0)兩點,
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)設(shè)此拋物線與直線y=﹣x在第二象限交于點D,平行于y軸的直線 與拋物線交于點M,與直線y=﹣x交于點N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請求出m的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⑴已知xy=5,x+y=6,則x-y=______
⑵已知(2016-a)(2017-a)=5,(a-2016)2+(2017-a)2的值為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,C是線段BE上一點,以BC、CE為邊分別在BE的同側(cè)作等邊△ABC和等邊△DCE,連結(jié)AE、BD.
(1)求證:BD=AE;
(2)如圖2,若M、N分別是線段AE、BD上的點,且AM=BN,請判斷△CMN的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,已知A(6,0),B(8,6),將線段OA平移至CB,點D在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD.
(1)寫出點C的坐標(biāo);
(2)當(dāng)△ODC的面積是△ABD的面積的3倍時,求點D的坐標(biāo);
(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com