【題目】如圖,在兩面墻之間有一個底端在A點的梯子,當(dāng)它靠在一側(cè)墻上時,梯子的頂端在B;當(dāng)它靠在另一側(cè)墻上時,梯子的頂端在D.已知∠BAC=60°,∠DAE=45°,D到地面的垂直距離DE=3 m.

(1)求兩面墻之間距離CE的大小

(2)求點B到地面的垂直距離BC的大小.

【答案】(1)兩面墻之間的距離CE的大小為(3+3)m;(2)B到地面的垂直距離BC的大小為3 m.

【解析】

(1)在RtADE中,運用勾股定理可求出梯子的總長度,然后利用勾股定理求得AC的長,從而求得線段CE的長;
(2)在RtABC中,根據(jù)已知條件再次運用勾股定理可求出BC的長.

(1)Rt△DAE

因為∠DAE=45°,DE=3 m,

所以AE=DE=3 m,

由勾股定理,AD2=AE2+DE2=36,

所以AD=6 m,

即梯子的總長為6 m,所以AB=AD=6 m.

Rt△ABC,因為∠BAC=60°,

所以∠ABC=30°,所以AC=AB=3 m,

所以CE=AC+AE=(3+3)m,

所以兩面墻之間的距離CE的大小為(3+3)m.

(2)Rt△ABC,AB=6 m,AC=3 m,

由勾股定理,

BC====3(m),

所以點B到地面的垂直距離BC的大小為3 m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過ABCD的對角線BD上一點M分別作平行四邊形兩邊的平行線EF與GH,那么圖中的AEMG的面積S1HCFM的面積S2的大小關(guān)系是( )

A. S1>S2 B. S1<S2 C. S1=S2 D. 2S1=S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人在電車路軌旁與路軌平行的路上騎車行走,他留意到每隔6分鐘有一部電車從他后面駛向前面,每隔2分鐘有一部電車從對面駛向后面.假設(shè)電車和此人行駛的速度都不變(分別為u1, u2表示),請你根據(jù)下面的示意圖,求電車每隔__________分鐘(用t表示)從車站開出一部.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE,AB=AD,AC=AE.且E,F(xiàn),C,D在同一直線上.

(1)求證:△ABC≌△ADE;

(2)若∠B=30°,∠BAC=100°,點F是CE的中點,連結(jié)AF,求∠FAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點P與點Q不重合,以點P為圓心作經(jīng)過Q的圓,則稱該圓為點P、Q的“相關(guān)圓”
(1)已知點P的坐標(biāo)為(2,0) ①若點Q的坐標(biāo)為(0,1),求點P、Q的“相關(guān)圓”的面積;
②若點Q的坐標(biāo)為(3,n),且點P、Q的“相關(guān)圓”的半徑為 ,求n的值;
(2)已知△ABC為等邊三角形,點A和點B的坐標(biāo)分別為(﹣ ,0)、( ,0),點C在y軸正半軸上,若點P、Q的“相關(guān)圓”恰好是△ABC的內(nèi)切圓且點Q在直線y=2x上,求點Q的坐標(biāo).
(3)已知△ABC三個頂點的坐標(biāo)為:A(﹣3,0)、B( ,0),C(0,4),點P的坐標(biāo)為(0, ),點Q的坐標(biāo)為(m, ),若點P、Q的“相關(guān)圓”與△ABC的三邊中至少一邊存在公共點,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設(shè)在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知B=30°,C=45°

(1)求B,C之間的距離;(保留根號)

(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBCABDCAB,BC,CD分別為2,2,22,則∠BAD的度數(shù)等于(  )

A. 120° B. 135° C. 150° D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊ABC所在平面內(nèi)找出一個點,使它與三角形中的任意兩個頂點所組成的三角形都是等腰三角形。這樣的點一共有( )

A. 1B. 4C. 7D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計圖中D組對應(yīng)的圓心角是多少度?
(3)要從成績優(yōu)秀的學(xué)生中,隨機選出2人介紹經(jīng)驗,已知甲、乙兩位同學(xué)的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案