(2010•仙桃)如圖,等腰Rt△ABC的直角邊長(zhǎng)為4,以A為圓心,直角邊AB為半徑作弧BC1,交斜邊AC于點(diǎn)C1,C1B1⊥AB于點(diǎn)B1,設(shè)弧BC1,C1B1,B1B圍成的陰影部分的面積為S1,然后以A為圓心,AB1為半徑作弧B1C2,交斜邊AC于點(diǎn)C2,C2B2⊥AB于點(diǎn)B2,設(shè)弧B1C2,C2B2,B2B1圍成的陰影部分的面積為S2,按此規(guī)律繼續(xù)作下去,得到的陰影部分的面積S3=   
【答案】分析:每一個(gè)陰影部分的面積都等于扇形的面積減去等腰直角三角形的面積.
此題的關(guān)鍵是求得AB2、AB3的長(zhǎng).根據(jù)等腰直角三角形的性質(zhì)即可求解.
解答:解:根據(jù)題意,得
AC1=AB=4.
所以AC2=AB1=2
所以AC3=AB2=2.
所以AB3=
所以陰影部分的面積S3=-×2=-1.
點(diǎn)評(píng):此題綜合運(yùn)用了等腰直角三角形的性質(zhì)和扇形的面積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線(xiàn)與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線(xiàn)EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線(xiàn)AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M.點(diǎn)P為線(xiàn)段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線(xiàn)交于點(diǎn)Q.
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線(xiàn)的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線(xiàn)與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線(xiàn)EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線(xiàn)AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M.點(diǎn)P為線(xiàn)段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線(xiàn)交于點(diǎn)Q.
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線(xiàn)的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線(xiàn)與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線(xiàn)EF的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案