【題目】已知數(shù)軸上的A、B兩點(diǎn)分別對(duì)應(yīng)數(shù)字a、b,且a、b滿足|4a-b|+(a-4)2=0
(1)a= ,b= ,并在數(shù)軸上面出A、B兩點(diǎn);
(2)若點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度向x軸正半軸運(yùn)動(dòng),求運(yùn)動(dòng)時(shí)間為多少時(shí),點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B距離的2倍;
(3)數(shù)軸上還有一點(diǎn)C的坐標(biāo)為30,若點(diǎn)P和點(diǎn)Q同時(shí)從點(diǎn)A和點(diǎn)B出發(fā),分別以每秒3個(gè)單位長(zhǎng)度和每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),P點(diǎn)到達(dá)C點(diǎn)后,再立刻以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn)A.求點(diǎn)P和點(diǎn)Q運(yùn)動(dòng)多少秒時(shí),P、Q兩點(diǎn)之間的距離為4,并求此時(shí)點(diǎn)Q對(duì)應(yīng)的數(shù).
【答案】(1)4,16.畫圖見解析;(2)或8秒;(3)點(diǎn)P和點(diǎn)Q運(yùn)動(dòng)4或8或9或11秒時(shí),P,Q兩點(diǎn)之間的距離為4.此時(shí)點(diǎn)Q表示的數(shù)為20,24,25,27.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)求出a、b的值即可解決問題;
(2)構(gòu)建方程即可解決問題;
(3)分四種情形構(gòu)建方程即可解決問題.
(1)∵a,b滿足|4a-b|+(a-4)2≤0,
∴a=4,b=16,
故答案為4,16.
點(diǎn)A、B的位置如圖所示.
(2)設(shè)運(yùn)動(dòng)時(shí)間為ts.
由題意:3t=2(16-4-3t)或3t=2(4+3t-16),
解得t=或8,
∴運(yùn)動(dòng)時(shí)間為或8秒時(shí),點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B的距離的2倍;
(3)設(shè)運(yùn)動(dòng)時(shí)間為ts.
由題意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,
解得t=4或8或9或11,
∴點(diǎn)P和點(diǎn)Q運(yùn)動(dòng)4或8或9或11秒時(shí),P,Q兩點(diǎn)之間的距離為4.
此時(shí)點(diǎn)Q表示的數(shù)為20,24,25,27.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向左移動(dòng)2cm到達(dá)A點(diǎn),再向左移動(dòng)3cm到達(dá)B點(diǎn),然后向右移動(dòng)9cm到達(dá)C點(diǎn)。
(1)用1個(gè)單位長(zhǎng)度表示1cm,請(qǐng)你在數(shù)軸上表示出A. B. C三點(diǎn)的位置;
(2)把點(diǎn)C到點(diǎn)A的距離記為CA,則CA=______cm.
(3)若點(diǎn)B以每秒2cm的速度向左移動(dòng),同時(shí)A. C點(diǎn)分別以每秒1cm、4cm的速度向右移動(dòng)。設(shè)移動(dòng)時(shí)間為t秒,試探索:CAAB的值是否會(huì)隨著t的變化而改變?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校組織的初中數(shù)學(xué)應(yīng)用能力競(jìng)賽中,每班參加比賽的人數(shù)相同,成績(jī)分為A、B、C、D四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為100分、90分、80分、70分,學(xué)校將八年級(jí)的一班和二班的成績(jī)整理并繪制成如下的統(tǒng)計(jì)圖,二班D級(jí)共有4人.
請(qǐng)你根據(jù)以上提供的信息解答下列問題:
(1)求此競(jìng)賽中一班共有多少人參加比賽,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)扇形統(tǒng)計(jì)圖中A級(jí)對(duì)應(yīng)的圓心角度數(shù)是 .
(3)此次競(jìng)賽中二班在C級(jí)以上(包括C級(jí))的人數(shù)為 .
(4)請(qǐng)你將表格補(bǔ)充完成:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖要求:Ⅰ、過直線外一點(diǎn)作這條直線的垂線;Ⅱ、作線段的垂直平分線;
Ⅲ、過直線上一點(diǎn)作這條直線的垂線;Ⅳ、作角的平分線.
如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對(duì)是( )
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣10ax+16a(a≠0)交x軸于A、B兩點(diǎn),拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H,且AB=2DH.
(1)求a的值;
(2)點(diǎn)P是對(duì)稱軸右側(cè)拋物線上的點(diǎn),連接PD,PQ⊥x軸于點(diǎn)Q,點(diǎn)N是線段PQ上的點(diǎn),過點(diǎn)N作NF⊥DH于點(diǎn)F,NE⊥PD交直線DH于點(diǎn)E,求線段EF的長(zhǎng);
(3)在(2)的條件下,連接DN、DQ、PB,當(dāng)DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°時(shí),作NC⊥PB交對(duì)稱軸左側(cè)的拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某升降機(jī)第一次上升5米,第二次又上升6米,第三次下降4米,第四次又下降7米。(上升記為正,下降記為負(fù),單位:米)
(1)這時(shí)升降機(jī)與初始位置相距多少米?
(2)升降機(jī)共運(yùn)行了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,射線從的位置開始繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),速度是每秒,同時(shí)射線從的位置開始繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),速度是每秒,設(shè)旋轉(zhuǎn)時(shí)間為秒.
(1)用含的代數(shù)式表示和的度數(shù);
(2)在旋轉(zhuǎn)過程中,當(dāng)等于時(shí),求的值;
(3)在旋轉(zhuǎn)過程中是否存在這樣的,使得射線恰好是圖中某個(gè)角的平分線?如果存在,請(qǐng)求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別與軸、軸交于兩點(diǎn),正比例函數(shù)的圖象與交于點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)求的表達(dá)式;
(3)求和的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com