23、已知x2-xy=21,xy-y2=-12,分別求式子x2-y2與x2-2xy+y2的值.
分析:首先把x2-y2變?yōu)椋▁2-xy)+(xy-y2),然后利用已知條件即可求出結果;把x2-2xy+y2變?yōu)椋▁2-xy)-(xy-y2),然后利用已知條件即可解決問題.
解答:解:x2-y2=(x2-xy)+(xy-y2)=21-12=9;
x2-2xy+y2=(x2-xy)-(xy-y2)=21+12=33.
點評:化簡求值是課程標準中所規(guī)定的一個基本內(nèi)容,它涉及對運算的理解以及運算技能的掌握兩個方面,也是一個常考的題材,同時也利用了整體代入求值的思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、已知x2-xy=21,xy-y2=-12,則式子x2-y2=
9
,x2-2xy+y2=
33

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知x2-xy=21,xy-y2=-12,分別求式子x2-y2與x2-2xy+y2的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知x2-xy=21,xy-y2=-12,分別求式子x2-y2與x2-2xy+y2的值.

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:計算題

已知x2-xy=21,xy-y2=-12,分別求式子x2-y2與x2-2xy+y2的值。

查看答案和解析>>

同步練習冊答案