【題目】如圖,一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的圖象交于點(diǎn)A(a,﹣2)和B(2,3),且直線AB交y軸于點(diǎn)C,連接OA、OB.
(1)求反比例函數(shù)的解析式和點(diǎn)A的坐標(biāo);
(2)根據(jù)圖象直接寫出:當(dāng)x在什么范圍取值時(shí),y1<y2.
【答案】(1)y=,A(﹣3,﹣2);(2)x<﹣3或0<x<2時(shí),y1<y2
【解析】
(1)把點(diǎn)B的坐標(biāo)代入y2,利用待定系數(shù)法求反比例函數(shù)解析式即可,把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式進(jìn)行計(jì)算求出a的值,從而得到點(diǎn)A的坐標(biāo);
(2)根據(jù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象下方的x的取值范圍即可.
(1)一次函數(shù)y1=k1x+b與反比例函數(shù)y2的圖象交于點(diǎn)B(2,3),
∴3,
∴k2=6,
∴反比例函數(shù)的解析式為y,
∵A(a,﹣2)在y的圖象上,
∴﹣2,
∴a=﹣3,
∴點(diǎn)A的坐標(biāo)為A(﹣3,﹣2);
(2)根據(jù)圖象得:當(dāng)x<﹣3或0<x<2時(shí),y1<y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)由1~28的連續(xù)整數(shù)排成的“數(shù)陣”.如圖2,用2×2的方框圍住了其中的四個(gè)數(shù),如果圍住的這四個(gè)數(shù)中的某三個(gè)數(shù)的和是27,那么這三個(gè)數(shù)是a,b,c,d中的_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx﹣c,它與x軸交于A、B,且A、B位于原點(diǎn)兩側(cè),與y的正半軸交于C,頂點(diǎn)D在y軸右側(cè)的直線l:y=4上,則下列說法:①bc<0;②0<b<4;③AB=4;④S△ABD=8.其中正確的結(jié)論有( )
A.①②B.②③C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把點(diǎn)以原點(diǎn)為中心,分別逆時(shí)針旋轉(zhuǎn),,,得到點(diǎn),,.
(1)畫出旋轉(zhuǎn)后的圖形,寫出點(diǎn),,的坐標(biāo),并順次連接、,,各點(diǎn);
(2)求出四邊形的面積;
(3)結(jié)合(1),若把點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),則點(diǎn)的坐標(biāo)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),四邊形OABC是矩形,四邊形ADEF是正方形,點(diǎn)A,D在x軸的正半軸上,點(diǎn)F在BA上,點(diǎn)B、E均在反比例函數(shù)y=(k≠0)的圖象上,若點(diǎn)B的坐標(biāo)為(1,6),則正方形ADEF的邊長為( )
A.1B.2C.4D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)D、E、F,得△DEF,則下列說法正確的個(gè)數(shù)是( 。
①△ABC與△DEF是位似圖形②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2④△ABC與△DEF的面積比為4:1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,過點(diǎn)A(0,4)的圓的圓心坐標(biāo)為C(2,0),B是第一象限圓弧上的一點(diǎn),且BC⊥AC,拋物線經(jīng)過C、B兩點(diǎn),與x軸的另一交點(diǎn)為D.
(1)點(diǎn)B的坐標(biāo)為( , ),拋物線的表達(dá)式為 .
(2)如圖2,求證:BD//AC;
(3)如圖3,點(diǎn)Q為線段BC上一點(diǎn),且AQ=5,直線AQ交⊙C于點(diǎn)P,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天晚上,李明利用燈光下的影子長來測(cè)量一路燈D的高度.如圖,當(dāng)在點(diǎn)A處放置標(biāo)桿時(shí),李明測(cè)得直立的標(biāo)桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處放置同一個(gè)標(biāo)桿,測(cè)得直立標(biāo)桿高BN的影子恰好是線段AB,并測(cè)得AB=1.2m,已知標(biāo)桿直立時(shí)的高為1.8m,求路燈的高CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com