【題目】如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡AF上的D處測得大樹頂端B的仰角是30°,在地面上A處測得大樹頂端B的仰角是45°.若坡角∠FAE=30°,AD=6m,求大樹的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.73)
【答案】大樹的高度約為14m.
【解析】
延長BD交AE于點G,作DH⊥AE于H,設(shè)BC=xm,由等腰三角形的判定可知DG=AD=6,進而可求出GH、GA的長,在Rt△BGC中,表示出CG的長,在Rt△BAC中,表示出AC的長,然后根據(jù)CG-AC=GA列方程求解即可.
延長BD交AE于點G,作DH⊥AE于H,
設(shè)BC=xm,
由題意得,∠DGA=∠DAG=30°,
∴DG=AD=6,
∴DH=3,GH=,
∴GA=6,
在Rt△BGC中,tan∠BGC=,
∴CG=,
在Rt△BAC中,∠BAC=45°,
∴AC=BC=x,
由題意得, x﹣x=6,
解得,x=≈14,
答:大樹的高度約為14m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個模型的三視圖如圖,其邊長如圖所示(單位:cm).制作這個模型的木料密度為150 kg/m3,則這個模型的質(zhì)量是多少kg?如果油漆這個模型,每千克油漆可以漆4 m2,需要油漆多少kg?(質(zhì)量=密度×體積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知△ABC,任取一點O,連接AO,BO,CO,并取它們的中點D,E,F,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長比為1∶2;④△ABC與△DEF的面積比為4∶1. 正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,sinC=,將△ABC繞點A逆時針旋轉(zhuǎn)得到△ADE,點B、C分別與點D、E對應(yīng),AD與邊BC交于點F.如果AE∥BC,那么BF的長是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.
(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;
(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,AC與BD相交于點E,點F在線段BC上,,.
(1)求證:AB∥EF;
(2)求S△ABE:S△EBC:S△ECD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC⊥CD.
(1)延長DC到E,使CE=CD,連接BE,求證:四邊形ABEC是矩形;
(2)若點F,G分別是BC,AD的中點,連接AF,CG,試判斷四邊形AFCG是什么特殊的四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點O,D為半圓上一點,AC∥OD,AD與OC交于點E,連結(jié)CD、BD,給出以下三個結(jié)論:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,航拍無人機從A處測得一幢建筑物頂部B的仰角為45°,測得底部C的俯角為60°,此時航拍無人機與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_____m(結(jié)果保留整數(shù),≈1.73).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com