【題目】如圖,在平面直角坐標(biāo)系中,邊長為 2 的正方形 ABCD 關(guān)于 y 軸對稱,邊 AD 在 x 軸上,點 B 在第四象限,直線 BD與反比例函數(shù) y=的圖象交于 B、E 兩點.
(1)求反比例函數(shù)的解析式;
(2)求點 E 的坐標(biāo)
.
【答案】(1);(2)點E的坐標(biāo)為(-2,1).
【解析】
(1)根據(jù)正方形的邊長,正方形關(guān)于y軸對稱,可得點A、B、D的坐標(biāo),根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)兩個函數(shù)解析式,組成方程組,解方程組,即可得答案.
解:(1)∵邊長為2的正方形ABCD關(guān)于y軸對稱,邊AD在x軸上,點B在第四象限,
∴A(1,0),D(-1,0),B(1,-2).
∵反比例函數(shù)的圖象經(jīng)過點B,
∴m=1(-2)=-2.
∴反比例函數(shù)解析式為.
(2)設(shè)直線BD的解析式為,
∴,
解得.
∴直線BD的解析式為:
∵直線BD與反比例函數(shù)的圖象交于B、E兩點,
∴
解得或
∵B(1,-2).
∴點E的坐標(biāo)為(-2,1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點在上,弦,垂足,弦,垂足為,弦與相交于點;
(1)如圖,求證:;
(2)如圖,連接,當(dāng)平分時,求證:弧弧;
(3)如圖,在(2)的條件下,半徑與相交于點,連接,若,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的一部分如圖所示,給出以下結(jié)論:;當(dāng)時,函數(shù)有最大值;方程的解是,;,其中結(jié)論錯誤的個數(shù)是
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點A,過點作AO的平行線交雙曲線于點B,連接AB并延長與y軸交于點,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以等邊三角形 ABC 的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形就是“勒洛三角形”(勒洛 三角形是定寬曲線所能構(gòu)成的面積最小的圖形),若 AB=2,則勒洛三角形的面積為( )
A. π+ B. π-C. 2π+2 D. 2π-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共4個,某學(xué)習(xí)小組進行摸球試驗,將球攪勻后從中隨機摸出一個球記下顏色,再放回,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)m | 23 | 33 | 60 | 130 | 202 | 251 |
摸到黑球的頻率 |
當(dāng)n很大時,估計從袋中摸出一個黑球的概率是______;
試估算口袋中白球有______個;
在的條件下,若從中先換出一球,不放回,搖勻后再摸出一球,請用列表或樹狀圖的方法求兩次都摸到白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某樓盤準(zhǔn)備以每平方米15000元的均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格經(jīng)過兩次下調(diào)后,決定以每平方米12150元的均價開盤銷售
求平均每次下調(diào)的百分率.
某人準(zhǔn)備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:
打折銷售;不打折,一次性送裝修費每平方米250元.
試問哪種方案更優(yōu)惠?比另外一種方案優(yōu)惠多少元?不考慮其他因素
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點為D,直線l過C交x軸于E(4,0).
(1)寫出D的坐標(biāo)和直線l的解析式;
(2)P(x,y)是線段BD上的動點(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點Q在x軸的正半軸上運動,過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對應(yīng)點為M′.在圖2中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個四位數(shù)n,如果千位與十位上的數(shù)字之和為9,百位與個位上的數(shù)字之和也為9,則稱n為“極數(shù)”,記為n= 其中,且x、y為整數(shù)
請任意寫出兩個“極數(shù)”;
猜想任意一個“極數(shù)”是否是99的倍數(shù),請說明理由;
如果一個正整數(shù)a是另一個正整數(shù)b的平方,則稱正整數(shù)a是完全平方數(shù),若四位數(shù)m為“極數(shù)”,記寫出三個滿足是完全平方數(shù)的只需直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com