(2005•宜賓)如圖1,等腰直角三角形ABC的腰長是2,∠ABC=90度.以AB為直徑作半圓O,M是BC上一動點(不運動至B、C兩點),過點M引半圓為O的切線,切點是P,過點A作AB的垂線AN,交切線MP于點N,AC與ON、MN分別交于點E、F.
(1)證明:△MON是直角三角形;
(2)當BM=時,求的值(結果不取近似值);
(3)當BM=時(圖2),判斷△AEO與△CMF是否相似?如果相似,請證明;如果不相似,請說明理由.

【答案】分析:(1)連接OP,通過證Rt△MOP≌Rt△MOB和Rt△NOP≌Rt△NOA,說明∠MOP=∠MOB和∠NOP=∠NOA,從而推出∠MON=90°;
(2)由(1)的結論,易證得△BOM∽△ANO,得AN:OB=OA:BM,由此可求得AN的長;由于NA、BM同垂直于AB,即AN∥BC,根據平行線分線段成比例定理,即可求得CF:AF的值.
(3)當BM=時,Rt△OBM中,易求得∠OMB=60°;根據切線長定理知:∠OMP=60°;因此∠CMF=60°;由(2)的相似三角形知∠AOE=∠OMB=60°;由此可證得∠AOE=∠CMF;又知△ABC為等腰直角三角形,即∠C=∠BAC=45°,由此可證得△AEO與△CMF.
解答:(1)證明:連接OP;
∵MB和MP是圓的切線,∴MP=MB;
又∵OP=OB,OM=OM,
∴Rt△MOP≌Rt△MOB;
∴∠POM=∠BOM,同理∠AON=∠PON;
∵∠POM+∠BOM+∠AON+∠PON=180°,
∴2(∠NOP+∠POM)=180°即∠NOP+∠POM=90°;
∴△NOM是直角三角形.

(2)解:∵△ABC是等腰直角三角形,AB=BC=2,
∴AO=OB=1,CM=BC-BM=2-
∵∠MOB+∠AON=∠AON+∠ANO=90°
∴∠BOM=∠ANO;
∴Rt△OBM∽Rt△NAO,
∴OB:AN=BM:AO,得AN=;
∵AN⊥AB,CB⊥AB,
∴AN∥BC;
∴CF:AF=CM:AN=(2-):=2-3;

(3)解:∵BM=,OB=1,
∴tan∠MOB=MB:OB=,即∠MOB=30°;
∴∠FMC=∠OMB=60°;
∴∠CMF=180°-2∠OMB=60°,∠EOA=180°-∠NOM-∠MOB=60°;
又∵∠C=∠OAE=45°
∴△AEO∽△CMF.
點評:本題主要考查了切線的性質、全等三角形和相似三角形的判定和性質、直角三角形的性質以及銳角三角函數(shù)的概念,涉及的知識點較多,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AM交x軸于點B.
(1)求這條拋物線的解析式;
(2)求點B的坐標;
(3)設點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,以P為頂點、PO為腰的等腰三角形的另一頂點Q在x軸的垂線交直線AM于點R,連接PR,設△PQR的面積為S,求S與x之間的函數(shù)關系式;
(4)在上述動點P(x,y)中,是否存在使S△PQR=2的點?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內的交點坐標(-1,n),則k的值是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市青春中學中考數(shù)學模擬試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AM交x軸于點B.
(1)求這條拋物線的解析式;
(2)求點B的坐標;
(3)設點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,以P為頂點、PO為腰的等腰三角形的另一頂點Q在x軸的垂線交直線AM于點R,連接PR,設△PQR的面積為S,求S與x之間的函數(shù)關系式;
(4)在上述動點P(x,y)中,是否存在使S△PQR=2的點?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年四川省宜賓市中考數(shù)學試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AM交x軸于點B.
(1)求這條拋物線的解析式;
(2)求點B的坐標;
(3)設點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,以P為頂點、PO為腰的等腰三角形的另一頂點Q在x軸的垂線交直線AM于點R,連接PR,設△PQR的面積為S,求S與x之間的函數(shù)關系式;
(4)在上述動點P(x,y)中,是否存在使S△PQR=2的點?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年四川省宜賓市中考數(shù)學試卷(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內的交點坐標(-1,n),則k的值是   

查看答案和解析>>

同步練習冊答案