【題目】在四邊形中,對(duì)角線、相交于點(diǎn),將繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)得到,旋轉(zhuǎn)角為θ(0°<θ<90°),連接、,與交于點(diǎn).
(1)如圖1,若四邊形是正方形.
①求證:≌.
②請(qǐng)直接寫出與的位置關(guān)系.
(2)如圖2,若四邊形是菱形,,,設(shè).判斷與的位置關(guān)系,說(shuō)明理由,并求出的值.
(3)如圖3,若四邊形是平行四邊形,,,連接,設(shè).請(qǐng)直接寫出的值和的值.
【答案】(1)①證明見解析;②AC1⊥BD1;(2)k=,AC1⊥BD1,理由見解析;(3)k=,AC12+(kDD1)2=25
【解析】
(1)①根據(jù)正方形與旋轉(zhuǎn)的性質(zhì),通過(guò)SAS證明兩三角形全等;
②由全等三角形的性質(zhì)得出,通過(guò)證明進(jìn)行求解;
(2)根據(jù)菱形與旋轉(zhuǎn)的性質(zhì)得出OC1=OA,OD1=OB,∠AOC1=∠BOD1,進(jìn)而可證明△AOC1∽△BOD1,利用相似三角形的性質(zhì)進(jìn)行求解;
(3)同(2)的解法相似可求出k的值,根據(jù)旋轉(zhuǎn)的性質(zhì)得出OD1=OB=OD,進(jìn)而可得出,利用勾股定理進(jìn)行求解.
(1)①證明:∵四邊形ABCD是正方形,
∴OC=OA=OD=OB,AC⊥BD,
∴∠AOB=∠COD=90°,
∵△COD繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)得到△C1OD1,
∴OC1=OC,OD1=OD,∠COC1=∠DOD1,
∴OC1=OD1,∠AOC1=∠BOD1,
在△AOC1和△BOD1中,
,
∴△AOC1≌△BOD1(SAS);
②解:AC1⊥BD1,理由如下:
∵△AOC1≌△BOD1,
∴,
∵,
∴,即,
∴AC1⊥BD1;
(2)解:AC1⊥BD1,理由如下:
∵四邊形ABCD是菱形,
∴OC=OA=AC,OD=OB=BD,AC⊥BD,
∴∠AOB=∠COD=90°,
∵△COD繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)得到△C1OD1,
∴OC1=OC,OD1=OD,∠COC1=∠DOD1,
∴OC1=OA,OD1=OB,∠AOC1=∠BOD1,
∴,
∴△AOC1∽△BOD1,
∴∠OAC1=∠OBD1,
又∵∠AOB=90°,
∴∠OAB+∠ABP+∠OBD1=90°,
∴∠OAB+∠ABP+∠OAC1=90°,
∴∠APB=90°,
∴AC1⊥BD1,
∵△AOC1∽△BOD1,
∴=,
∴k=;
(3)解:與(2)一樣可證明△AOC1∽△BOD1,
∴,
∴k=;
∵△COD繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)得到△C1OD1,
∴OD1=OD,而OD=OB,
∴OD1=OB=OD,
∴△BDD1為直角三角形,即,
在Rt△BDD1中,BD12+DD12=BD2=100,
∴(2AC1)2+DD12=100,
∴AC12+(kDD1)2=25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,P是BC上一點(diǎn),E是AB上一點(diǎn),PD平分∠APC,PE⊥PD,連接DE交AP于F,在以下判斷中,不正確的是( 。
A.當(dāng)P為BC中點(diǎn),△APD是等邊三角形
B.當(dāng)△ADE∽△BPE時(shí),P為BC中點(diǎn)
C.當(dāng)AE=2BE時(shí),AP⊥DE
D.當(dāng)△APD是等邊三角形時(shí),BE+CD=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在方格紙中,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形.已知圖1,圖2中的每一個(gè)小方格的邊長(zhǎng)都為1.
(1)的三邊長(zhǎng)為,,.
①在圖1中畫一個(gè)符合題意的;
②求的邊上的高線長(zhǎng);
(2)在的方格紙紙板中最多能剪下(要完整不拼湊)多少個(gè)與(1)中全等的三角形?并在圖2中設(shè)計(jì)出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線的頂點(diǎn)為P(3,—2),且在x軸上截得的線段AB=4.
(1)求拋物線的解析式.
(2)若點(diǎn)Q在拋物線上,且ΔQAB的面積為12,求Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)A在x軸上,OA=4,將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°至OB的位置.
(1)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線的函數(shù)解析式;
(2)在此拋物線的對(duì)稱軸上是否存在點(diǎn)P使得以P、O、B三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3 )如圖2,OC=4,⊙A的半徑為2,點(diǎn)M是⊙A上的一個(gè)動(dòng)點(diǎn),求MC+OM的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.
(1)求點(diǎn),,的坐標(biāo);
(2)求直線的解析式;
(3)在直線下方的拋物線上是否存在一點(diǎn),使的面積最大?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,菱形的頂點(diǎn)、在菱形的邊上,且,請(qǐng)直接寫出的結(jié)果(不必寫計(jì)算過(guò)程)
(2)將圖1中的菱形繞點(diǎn)旋轉(zhuǎn)一定角度,如圖2,求;
(3)把圖2中的菱形都換成矩形,如圖3,且,此時(shí)的結(jié)果與(2)小題的結(jié)果相比有變化嗎?如果有變化,直接寫出變化后的結(jié)果(不必寫計(jì)算過(guò)程);若無(wú)變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.“打開電視機(jī),正在播世界杯足球賽”是必然事件
B.甲組數(shù)據(jù)的方差是,乙組數(shù)據(jù)的方差是,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
C.一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D.“擲一枚硬幣,正面朝上的概率是0.5”表示每拋擲硬幣2次就有1次正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定一個(gè)函數(shù),如果這個(gè)函數(shù)的圖象上存在一個(gè)點(diǎn),它的橫、縱坐標(biāo)相等,那么這個(gè)點(diǎn)叫做該函數(shù)的不變點(diǎn).
(1)一次函數(shù)的不變點(diǎn)的坐標(biāo)為______.
(2)二次函數(shù)的兩個(gè)不變點(diǎn)分別為點(diǎn)(在的左側(cè)),將點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到點(diǎn),求點(diǎn)的坐標(biāo).
(3)已知二次函數(shù)的兩個(gè)不變點(diǎn)的坐標(biāo)為.
①求的值;
②如圖,設(shè)拋物線與線段圍成的封閉圖形記作.點(diǎn)為一次函數(shù)的不變點(diǎn),以線段為邊向下作正方形.當(dāng)兩點(diǎn)中只有一個(gè)點(diǎn)在封閉圖形的內(nèi)部(不包含邊界)時(shí),求出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com