【題目】計(jì)算
(1)(2015﹣π)0+| ﹣2|+ +( )﹣1;
(2)先化簡(jiǎn),再求值:(a﹣ )(a+ )﹣a(a﹣6),其中a= + .
【答案】
(1)解:原式=1+2﹣ + +3=6+0=6
(2)解:原式=a2﹣3﹣a2+6a=6a﹣3=3(2a﹣1),
當(dāng)a= + 時(shí),原式=3×2 =6
【解析】(1)原式利用零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,絕對(duì)值的代數(shù)意義,以及二次根式的除法法則計(jì)算即可得到結(jié)果;(2)原式利用平方差公式,單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,合并得到最簡(jiǎn)結(jié)果,把a(bǔ)的值代入計(jì)算即可求出值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì),掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,它使數(shù)和數(shù)軸上的點(diǎn)建立起對(duì)應(yīng)關(guān)系,揭示了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ)。小白在草稿紙上畫(huà)了一條數(shù)軸進(jìn)行操作探究:
操作一:
(1)折疊紙面,若使1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣2表示的點(diǎn)與_______表示的點(diǎn)重合;
操作二:
(2)折疊紙面,若使1表示的點(diǎn)與﹣3表示的點(diǎn)重合,回答以下問(wèn)題:
①3表示的點(diǎn)與_______表示的點(diǎn)重合;
②若數(shù)軸上A、B兩點(diǎn)之間距離為7(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,則A、B兩點(diǎn)表示的數(shù)分別是______________;
操作三:
(3)在數(shù)軸上剪下9個(gè)單位長(zhǎng)度(從﹣1到8)的一條線段,并把這條線段沿某點(diǎn)折疊,然后在重疊部分某處剪一刀得到三條線段(例如下圖). 若這三條線段的長(zhǎng)度之比為1:1:2,則折痕處對(duì)應(yīng)的點(diǎn)所表示的數(shù)可能是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在埃及新投產(chǎn)一座雞飼料廠,年生產(chǎn)飼料可飼養(yǎng)57000000只肉雞,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植物的主干長(zhǎng)出若干數(shù)目的枝干,每個(gè)枝干又長(zhǎng)出同樣數(shù)目的小分支,主干、枝干和小分支的總數(shù)是91,設(shè)每個(gè)枝干長(zhǎng)出x小分支,列方程為( 。
A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,點(diǎn)M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,則∠B=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(-6ab)2·(-3a2b)的結(jié)果是( )
A. 18a4b3B. -36a4b3C. -108a4b3D. 108a4b3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱(chēng)軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于x軸的一條直線交拋物線于M,N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com