(2007•眉山)如圖,A、B是反比例函數(shù)的圖象上的兩點(diǎn),AC、BD都垂直于x軸,垂足分別為C、D,AB的延長線交x軸于點(diǎn)E.若C、D的坐標(biāo)分別為(1,0),(4,0),則△BDE的面積與△ACE的面積的比值是( )

A.
B.
C.
D.
【答案】分析:根據(jù)相似三角形的面積的比等于相似比的平方可知.
解答:解:∵C、D的坐標(biāo)分別為(1,0),(4,0),
∴AC=2,BD=,
∴根據(jù)相似三角形的判定可知,△BDE∽△ACE,
所以相似比是1:4,
所以△BDE的面積與△ACE的面積的比值是1:16.
故選D.
點(diǎn)評:主要考查了反比例函數(shù)中k的幾何意義和相似三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•眉山)如圖,矩形A′BC′O′是矩形OABC(邊OA在x軸正半軸上,邊OC在y軸正半軸上)繞B點(diǎn)逆時針旋轉(zhuǎn)得到的,O′點(diǎn)在x軸的正半軸上,B點(diǎn)的坐標(biāo)為(1,3).
(1)如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O,O′兩點(diǎn)且圖象頂點(diǎn)M的縱坐標(biāo)為-1,求這個二次函數(shù)的解析式;
(2)在(1)中求出的二次函數(shù)圖象對稱軸的右支上是否存在點(diǎn)P,使得△POM為直角三角形?若存在,請求出P點(diǎn)的坐標(biāo)和△POM的面積;若不存在,請說明理由;
(3)求邊C′O′所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2007•眉山)如圖,矩形A′BC′O′是矩形OABC(邊OA在x軸正半軸上,邊OC在y軸正半軸上)繞B點(diǎn)逆時針旋轉(zhuǎn)得到的,O′點(diǎn)在x軸的正半軸上,B點(diǎn)的坐標(biāo)為(1,3).
(1)如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O,O′兩點(diǎn)且圖象頂點(diǎn)M的縱坐標(biāo)為-1,求這個二次函數(shù)的解析式;
(2)在(1)中求出的二次函數(shù)圖象對稱軸的右支上是否存在點(diǎn)P,使得△POM為直角三角形?若存在,請求出P點(diǎn)的坐標(biāo)和△POM的面積;若不存在,請說明理由;
(3)求邊C′O′所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省眉山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•眉山)如圖,矩形A′BC′O′是矩形OABC(邊OA在x軸正半軸上,邊OC在y軸正半軸上)繞B點(diǎn)逆時針旋轉(zhuǎn)得到的,O′點(diǎn)在x軸的正半軸上,B點(diǎn)的坐標(biāo)為(1,3).
(1)如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O,O′兩點(diǎn)且圖象頂點(diǎn)M的縱坐標(biāo)為-1,求這個二次函數(shù)的解析式;
(2)在(1)中求出的二次函數(shù)圖象對稱軸的右支上是否存在點(diǎn)P,使得△POM為直角三角形?若存在,請求出P點(diǎn)的坐標(biāo)和△POM的面積;若不存在,請說明理由;
(3)求邊C′O′所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(01)(解析版) 題型:選擇題

(2007•眉山)如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的是( )

A.△ACE以點(diǎn)A為旋轉(zhuǎn)中心,逆時針方向旋轉(zhuǎn)90°后與△ADB重合
B.△ACB以點(diǎn)A為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn)270°后與△DAC重合
C.沿AE所在直線折疊后,△ACE與△ADE重合
D.沿AD所在直線折疊后,△ADB與△ADE重合

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2007•眉山)如圖,在線段AE的同側(cè)作正方形ABCD和正方形BEFG(BE<AB),連接EG并延長交DC于M,過M(1,-1)作MN⊥AB,垂足為N,MN交BD于P.
(1)找出圖中一對全等三角形,并加以證明(正方形的對角線分正方形得到的兩個三角形除外);
(2)設(shè)正方形ABCD的邊長為1,按照題設(shè)方法作出的四邊形BGMP,若是菱形,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案