在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足為D,BE是邊AC上的中線,AD與BE相交于點G,那么AG的長為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    無法確定
B
分析:先根據(jù)等腰三角形的性質(zhì)和勾股定理求出AD,再判斷點G為△ABC的重心,然后根據(jù)三角形重心的性質(zhì)來求AG的長.
解答:解:∵在△ABC中,AB=AC,AD⊥BC,
∴AD==3,
∵中線BE與高AD相交于點G,
∴點G為△ABC的重心,
∴AG=3×=2.
故選B.
點評:本題考查了等腰三角形的性質(zhì)和勾股定理以及三角形的重心的性質(zhì),判斷點G為三角形的重心是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案