【題目】某學(xué)生本學(xué)期6次數(shù)學(xué)考試成績?nèi)缦卤硭荆?/span>

成績類別

第一次月考

第二次月考

期中

第三次月考

第四次月考

期末

成績/

105

110

108

113

108

112

16次考試成績的中位數(shù)為 ,眾數(shù)為 .

2)求該生本學(xué)期四次月考的平均成績.

3)如果本學(xué)期的總評成績按照月考平均成績占20﹪、期中成績占30﹪、期末成績占50﹪計(jì)算,那么該生本學(xué)期的數(shù)學(xué)總評成績是多少?

【答案】1109 108.2109;(3110.2

【解析】

1)把6個(gè)數(shù)從小到大排列,按照中位數(shù)、眾數(shù)的概念即可得出結(jié)論;
2)把平時(shí)測試成績相加,再求出其平均數(shù)即可;
3)取4次月考成績平均分的20%加上期中成績的30﹪加上期末成績的50﹪計(jì)算即可.

解:(1)這6個(gè)數(shù)從小到大排列為:105108,108,110112,113,中位數(shù)是=109,眾數(shù)是108
故答案為:109,108
2)平時(shí)測試的數(shù)學(xué)平均成績=(分);
3)總評成績=(分)
答:該生本學(xué)期的數(shù)學(xué)總評成績?yōu)?/span>110.2分。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,MN分別是CD,BC的中點(diǎn),且AMCD,ANBC。

(1)求證:∠BAD=2MAN;

(2)連接BD,若∠MAN=70°,DBC=40°,求∠ADC。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn),直線x軸交于點(diǎn)

1)求的值;

2)過第二象限的點(diǎn)作平行于x軸的直線,交直線于點(diǎn)C,交函數(shù)的圖象于點(diǎn)D

①當(dāng)時(shí),判斷線段PDPC的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條道路上通行車輛限速為60千米/時(shí)在離道路50米處建有一個(gè)監(jiān)測點(diǎn)P,道路AB段為檢測區(qū)(如圖).在ABP已知∠PAB=32°,PBA=45°,那么車輛通過AB段的時(shí)間在多少秒以內(nèi)時(shí),可認(rèn)定為超速?(精確到0.1秒.參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形、…按如圖所示的方式放置.點(diǎn)、、…和點(diǎn)、…別在直線軸上,則點(diǎn)的坐標(biāo)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.

(1)求k、b的值;

(2)若點(diǎn)Dy軸負(fù)半軸上,且滿足SCOD=SBOC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班去商場為書法比賽買獎(jiǎng)品,書包每個(gè)定價(jià)40元,文具盒每個(gè)定價(jià)8元,商場實(shí)行兩種優(yōu)惠方案:買一個(gè)書包送一個(gè)文具盒:按總價(jià)的9折付款.若該班需購買書包10個(gè),購買文具盒若干個(gè)(不少于10個(gè)).

1)當(dāng)買文具盒40個(gè)時(shí),分別計(jì)算兩種方案應(yīng)付的費(fèi)用;

2)當(dāng)購買文具盒多少個(gè)時(shí),兩種方案所付的費(fèi)用相同;

3)如何根據(jù)購買文具盒的個(gè)數(shù),選擇哪種優(yōu)惠方案的費(fèi)用比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線AB與直線PQ交于點(diǎn)E,直線CD與直線PQ交于點(diǎn)F,∠PEB+QFD180°.

1)如圖1,求證:ABCD;

2)如圖2,點(diǎn)G為直線PQ上一點(diǎn),過點(diǎn)G作射線GHAB,在∠EFD內(nèi)過點(diǎn)F作射線FM,∠FGH內(nèi)過點(diǎn)G作射線GN,∠MFD=∠NGH,求證:FMGN

3)如圖3,在(2)的條件下,點(diǎn)R為射線FM上一點(diǎn),點(diǎn)S為射線GN上一點(diǎn),分別連接RG、RSRE,射線RT平分∠ERS,∠SGR=∠SRG,TKRG,若∠KTR+ERF108°,∠ERT2TRF,∠BER40°,求∠NGH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BAD=BCD=90°,連接AC.若AC=6,則四邊形ABCD的面積為

查看答案和解析>>

同步練習(xí)冊答案