【題目】一只不透明的袋子中裝有1個(gè)紅球、1個(gè)黃球和1個(gè)白球,這些球除顏色外都相同
(1)攪勻后從袋子中任意摸出1個(gè)球,求摸到紅球的概率;
(2)攪勻后從袋子中任意摸出1個(gè)球,記錄顏色后放回、攪勻,再從中任意摸出1個(gè)球,求兩次都摸到紅球的概率.

【答案】
(1)解:摸到紅球的概率=
(2)解:畫樹狀圖為:

共有9種等可能的結(jié)果數(shù),其中兩次都摸到紅球的結(jié)果數(shù)為1,

所以兩次都摸到紅球的概率=


【解析】(1)直接利用概率公式求解;(2)先利用畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出兩次都摸到紅球的結(jié)果數(shù),然后根據(jù)概率公式求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解列表法與樹狀圖法的相關(guān)知識(shí),掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率,以及對(duì)概率公式的理解,了解一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.請(qǐng)問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,已知A型的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛。假設(shè)所進(jìn)車輛全部售完,為了使利潤最大,該商城應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)用鐵絲圍成的籃框,我們來仿制一個(gè)類似的柱體形籃框.如圖2,它是由一個(gè)半徑為r、圓心角90°的扇形A2OB2 , 矩形A2C2EO、B2D2EO,及若干個(gè)缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn , OEFG圍成,其中A1、G、B1 上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2 , C1D1⊥EF于H1 , FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個(gè)矩形狀框的邊CnDn與點(diǎn)E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn
(1)求d的值;
(2)問:CnDn與點(diǎn)E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)市場新進(jìn)一批水果,有蘋果、西瓜、桃子和香蕉四個(gè)品種,統(tǒng)計(jì)后將結(jié)果繪制成條形圖(如圖),已知西瓜的重量占這批水果總重量的40%. 回答下列問題:

(1)這批水果總重量為kg;
(2)請(qǐng)將條形圖補(bǔ)充完整;
(3)若用扇形圖表示統(tǒng)計(jì)結(jié)果,則桃子所對(duì)應(yīng)扇形的圓心角為度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1=kx+m(k≠0)和二次函數(shù)y2=ax2+bx+c(a≠0)的自變量和對(duì)應(yīng)函數(shù)值如表:

x

﹣1

0

2

4

y1

0

1

3

5

x

﹣1

1

3

4

y2

0

﹣4

0

5

當(dāng)y2>y1時(shí),自變量x的取值范圍是(
A.x<﹣1
B.x>4
C.﹣1<x<4
D.x<﹣1或x>4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x與二次函數(shù)y=x2+bx的圖象相交于O、A兩點(diǎn),點(diǎn)A(3,3),點(diǎn)M為拋物線的頂點(diǎn).

(1)求二次函數(shù)的表達(dá)式;
(2)長度為2 的線段PQ在線段OA(不包括端點(diǎn))上滑動(dòng),分別過點(diǎn)P、Q作x軸的垂線交拋物線于點(diǎn)P1、Q1 , 求四邊形PQQ1P1面積的最大值;
(3)直線OA上是否存在點(diǎn)E,使得點(diǎn)E關(guān)于直線MA的對(duì)稱點(diǎn)F滿足SAOF=SAOM?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解“通話時(shí)長”(“通話時(shí)長”指每次通話時(shí)間)的分布情況,小強(qiáng)收集了他家1000個(gè)“通話時(shí)長”數(shù)據(jù),這些數(shù)據(jù)均不超過18(分鐘).他從中隨機(jī)抽取了若干個(gè)數(shù)據(jù)作為樣本,統(tǒng)計(jì)結(jié)果如下表,并繪制了不完整的頻數(shù)分布直方圖.

“通話時(shí)長”
(x分鐘)

0<x≤3

3<x≤6

6<x≤9

9<x≤12

12<x≤15

15<x≤18

次數(shù)

36

a

8

12

8

12

根據(jù)表、圖提供的信息,解答下面的問題:
(1)a= , 樣本容量是;
(2)求樣本中“通話時(shí)長”不超過9分鐘的頻率:;
(3)請(qǐng)估計(jì)小強(qiáng)家這1000次通話中“通話時(shí)長”超過15分鐘的次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)= (其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)= =b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1. ①求a,b的值;
②若關(guān)于m的不等式組 恰好有3個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;
(2)若T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1) ﹣|﹣2|+(﹣2)0;
(2)(x+1)(x﹣1)﹣(x﹣2)2

查看答案和解析>>

同步練習(xí)冊(cè)答案