14.問題情境:在學完2.4節(jié)圓周角之后,老師出了這樣一道題:
如圖1,已知點A為∠MPN的平分線PQ上的任一點,以AP為弦作圓O與邊PM、PN分別交于B、C兩點,連結AB、BC、CA,形成了圓O的內(nèi)接△ABC.小明同學發(fā)現(xiàn)△ABC是一個等腰三角形,理由是∠ABC=∠APC,∠ACB=∠APB,又由角平分線得∠APC=∠APB,所以∠ABC=∠ACB,AB=AC得證.
請你說出小明使用的是圓周角的哪個性質(zhì):同弧所對的圓周角相等(只寫文字內(nèi)容).
深入探究:愛鉆研的小慧卻畫出了圖2,與邊PN的反向延長線交于點C,其它條件不變,△ABC仍是等腰三角形,請你寫出證明過程.
拓展提高:妙想的小聰提出如圖3,如果圓O與邊PN相切于點C(與P點已重合),其它條件不變,△ABC仍是等腰三角形嗎?若是,請寫出證明過程;若不是,請說明理由.

分析 因為∠ABC和∠APC都是弧AC對著的圓周角,所以∠ABC=∠APC,即同弧所對的圓周角相等,同理可得∠ACB=∠APB,進而可知道小明使用的是圓周角的哪個性質(zhì);
深入探究:△ABC仍是等腰三角形,由圓的內(nèi)接四邊形定理以及圓周角定理證明再結合已知條件證明∠ABC=∠ACB即可得到AB=AC;
拓展提高:作直徑CH,連結AH,由圓周角定理以及其同理和切線的性質(zhì)定理再結合已知條件證明∠ABC=∠ACB,即可得到AB=AC.

解答 解:問題情境:同弧所對的圓周角相等,
深入探究:△ABC仍是等腰三角形,理由如下:
∵∠ABC+∠APC=180°,∠APN+∠APC=180°,
∴∠ABC=∠APN.
∵PA 平分∠MPN,
∴∠APB=∠APN,
∴∠ABC=∠APB.
而∠APB=∠ACB,
∴∠ABC=∠ACB,
∴AB=AC;
拓展提高:△ABC仍是等腰三角形理由如下:
作直徑CH,連結AH,
∵CH為直徑,
∴∠AHC=90°,
∴∠H+∠ACH=90°.
∵CN與圓O相切,
∴CN⊥CH,
∴∠ACN+∠ACH=90°,
∴∠ACN=∠H.
∵∠ABC=∠H,
∴∠ACN=∠ABC.
∵PA 平分∠MPN,
∴∠ACB=∠CAN.
∴∠ABC=∠ACB,
∴AB=AC.

點評 本題考查了和圓有關的綜合性題目,用到的知識點有圓周角定義及其推論、角平分線的定義、圓的內(nèi)接四邊形定理以及切線的性質(zhì)定理,題目的設計新穎,對學生理解問題的能力要求較高,特別是拓展提高部分正確作出圖形的輔助線是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

11.(1)$\sqrt{18}$-$\frac{2}{\sqrt{2}}$+(1-$\sqrt{2}$)+($\frac{1}{2}$)-1;
(2)($\frac{1}{2}$)-1+($\sqrt{2}$-1)0×$\root{3}{-8}$-|1-$\sqrt{5}$|;
(3)(a+2)2-a(1-a)-(2-3a)(a+2);
(4)($\frac{x+2}{x-2}+\frac{4}{{{x^2}-4x+4}}$)÷$\frac{x}{x-2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.如圖,在平面直角坐標系中,Rt△OAB的斜邊OB在x軸的正半軸上,點A在第一象限,將△OAB,使點O按逆時針方向旋轉至△OA′B′,使點A的對應點A′落在y軸的正半軸上,已知OB=2,∠AOB=30°.
(1)求點A和點B′的坐標;
(2)判斷點B、B′、A是否在同一直線上并說明理由.
(3)點M在坐標平面內(nèi),若△MOB與△AOB全等,畫出圖形并直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖1,△ABC為等邊三角形,點M是射線AE上任意一點(M不與A重合),連接CM,將線段CM繞點C按順時針方向旋轉60°得到線段CN,連接BN,直線BN交射線AE于點D.
(1)直接寫出直線BD與射線AE相交所成銳角的度數(shù);
(2)如圖2,當射線AE與AC的夾角∠EAC為鈍角時,其他條件不變,(1)中結論是否發(fā)生變化?如果不變,加以證明;如果變化,請說明理由;
(3)如圖3,在等腰Rt△ABC中,∠ACB=90°,射線AE交BC于點H,∠EAC=15°,點M是射線AE上任意一點(M不與A重合),連接CM,將線段CM繞點C按順時針方向旋轉90°得到線段CN,連接BN,直線BN交射線AE于點D.G,F(xiàn)分別是AH,AB的中點.求證:CD=GF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.(-8)2的立方根是( 。
A.-2B.±2C.4D.±4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

19.如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=$\frac{\sqrt{6}}{x}$上,第二象限的點B在反比例函數(shù)y=$\frac{k}{x}$上,且OA⊥OB,∠A=30°,則k的值為-$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

6.已知數(shù)據(jù)$\sqrt{3}$,$\frac{1}{3}$,$\sqrt{2}$,π,-3.14,其中無理數(shù)出現(xiàn)的頻率為(  )
A.80%B.60%C.40%D.20%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

3.如果a2-ab-4c是一個完全平方式,那么c等于(  )
A.$\frac{1}{4}$b2B.-$\frac{1}{8}$b2C.$\frac{1}{16}$b2D.-$\frac{1}{16}$b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

4.下列說法:
①數(shù)軸上的點和有理數(shù)是一一對應的;
②不帶根號的數(shù)一定是有理數(shù);
③無限小數(shù)都是無理數(shù);
④-$\sqrt{13}$是13的平方根.
其中正確的個數(shù)為(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習冊答案