【題目】如圖,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得點(diǎn)O在邊AB上,且⊙O經(jīng)過B、D兩點(diǎn);并證明AC與⊙O相切.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是線段延長線上一點(diǎn),連接,過點(diǎn)作于.
(1)求證:.
(2)將射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)后,所得的射線與線段的延長線交于點(diǎn),連接.
①依題意補(bǔ)全圖形;
②用等式表示線段,,之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批成本為每件30元的商品,商店按單價(jià)不低于成本價(jià),且不高于50元銷售.經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)銷售單價(jià)定為多少元時(shí),才能使銷售該商品每天獲得的利潤w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤高于800元,請直接寫出每天的銷售量y(件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的正方形的對角線與交于點(diǎn),將正方形沿直線折疊,點(diǎn)落在對角線上的點(diǎn)處,折痕交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識了解某廣告牌的高度,已知CD=2m.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH=37°,∠DBH=67°,AB=10m,請你根據(jù)以上數(shù)據(jù)計(jì)算GH的長.(參考數(shù)據(jù),,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(1,0).
(1)當(dāng)b=2,c=﹣3時(shí),求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖象經(jīng)過點(diǎn)B(m,e),C(3﹣m,e)且對任意實(shí)數(shù)x,函數(shù)值y都不小于﹣.
①求此時(shí)二次函數(shù)的解析式;
②若次函數(shù)與y軸交于點(diǎn)D,在對稱軸上存在一點(diǎn)P,使得PA+PD有最小值,求點(diǎn)P坐標(biāo)及PA+PD的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)我們把一條拋物線上橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)叫做這條拋物線的“方點(diǎn)”.試求拋物線的“方點(diǎn)”的坐標(biāo);
(2)如圖,若將該拋物線向左平移1個(gè)單位長度,新拋物線與軸相交于、兩點(diǎn)(在左側(cè)),與軸相交于點(diǎn),連接.若點(diǎn)是直線上方拋物線上的一點(diǎn),求的面積的最大值;
(3)第(2)問中平移后的拋物線上是否存在點(diǎn),使是以為直角邊的直角三角形?若存在,直接寫出所有符合條件的點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.
如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點(diǎn)F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點(diǎn))與內(nèi)心I(三角形三條角平分線的交點(diǎn))之間的距離OI=d,則有d2=R2﹣2Rr.
下面是該定理的證明過程(部分):
延長AI交⊙O于點(diǎn)D,過點(diǎn)I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,
∵DE是⊙O的直徑,∴∠DBE=90°,
∵⊙I與AB相切于點(diǎn)F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB,
∴,∴②,
任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);
(2)請判斷BD和ID的數(shù)量關(guān)系,并說明理由;
(3)請觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ABC的角平分線BE與AD交于點(diǎn)E,∠BED的角平分線EF與DC交于點(diǎn)F,若AB=8,DF=3FC,則BC=__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com