【題目】已知:如下圖, AB∥CD , 點E , F分別為AB , CD上一點.
(1)在AB , CD之間有一點M(點M不在線段EF上),連接ME , MF , 試探究∠AEM , ∠EMF , ∠MFC之間有怎樣的數(shù)量關系. 請補全圖形,并在圖形下面寫出相應的數(shù)量關系,選其中一個進行證明.
(2)如下圖,在AB , CD之間有兩點M , N , 連接ME , MN , NF , 請選擇一個圖形寫出∠AEM , ∠EMN , ∠MNF , ∠NFC 存在的數(shù)量關系(不需證明).
【答案】
(1)
解:∠EMF=∠AEM+∠MFC.
證明:過點M作MP∥AB.
∵AB∥CD,
∴MP∥CD.
∴∠4=∠3.
∵MP∥AB,
∴∠1=∠2.
∵∠EMF=∠2+∠3,
∴∠EMF=∠1+∠4.
∴∠EMF=∠AEM+∠MFC.
∠AEM+∠EMF+∠MFC=360°
證明:過點M作MQ∥AB.
∵AB∥CD,
∴MQ∥CD.
∴∠CFM+∠1=180°.
∵MQ∥AB,
∴∠AEM+∠2=180°.
∴∠CFM+∠1+∠AEM+∠2=360°
∵∠EMF=∠1+∠2
∴∠AEM+∠EMF+∠MFC=360°.
(2)
解:第一圖數(shù)量關系:∠EMN+∠MNF-∠AEM-∠NFC=180°.
第二圖數(shù)量關系:∠EMN-∠MNF+∠AEM+∠NFC=180°.
【解析】(1)分點M在EF的左側(cè)和右側(cè)兩種情況,當點M在EF的左側(cè)時,如圖,∠EMF=∠AEM+∠MFC,過點M作MP∥AB,可得AB∥CD∥MP, 根據(jù)平行線的性質(zhì)可得∠4=∠3, ∠1=∠2,即可證得∠EMF=∠AEM+∠MFC;當點M在EF的右側(cè)時,類比左側(cè)的方法即可證∠AEM+∠EMF+∠MFC=360°;
(2)類比(1)的方法作平行線,利用平行線的性質(zhì)即可解決.
【考點精析】本題主要考查了平行線的判定與性質(zhì)的相關知識點,需要掌握由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】在一個布袋中裝有紅、白兩種顏色的小球,它們除顏色外沒有任何其他區(qū)別.其中紅球若干,白球5個,袋中的球已攪勻.若從袋中隨機取出1個球,取出紅球的可能性大,則紅球的個數(shù)是( )
A. 4個B. 5個C. 不足4個D. 6個或6個以上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水龍頭關閉不嚴會造成滴水,容器內(nèi)盛水量w(L)與滴水時間t(h)的關系用可以顯示水量的容器做如圖1的試驗,并根據(jù)試驗數(shù)據(jù)繪制出如圖2的函數(shù)圖象,結(jié)合圖象解答下列問題.
(1)容器內(nèi)原有水多少升?
(2)求w與t之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)內(nèi)的環(huán)形路是邊長為800米的正方形ABCD,如圖1和圖2.現(xiàn)有1號、2號兩游覽車分別從出口A和景點C同時出發(fā),1號車順時針、2號車逆時針沿環(huán)形路連續(xù)循環(huán)行駛,供游客隨時免費乘車(上、下車的時間忽略不計),兩車速度均為200米/分.
探究:設行駛吋間為t分.
(1)當0≤t≤8時,分別寫出1號車、2號車在左半環(huán)線離出口A的路程y1 , y2(米)與t(分)的函數(shù)關系式,并求出當兩車相距的路程是400米時t的值;
(2)t為何值時,1號車第三次恰好經(jīng)過景點C?并直接寫出這一段時間內(nèi)它與2號車相遇過的次數(shù).
(3)發(fā)現(xiàn):如圖2,游客甲在BC上的一點K(不與點B,C重合)處候車,準備乘車到出口A,設CK=x米. 情況一:若他剛好錯過2號車,便搭乘即將到來的1號車;
情況二:若他剛好錯過1號車,便搭乘即將到來的2號車.
比較哪種情況用時較多?(含候車時間)
決策:己知游客乙在DA上從D向出口A走去.步行的速度是50米/分.當行進到DA上一點P (不與點D,A重合)時,剛好與2號車迎面相遇.
他發(fā)現(xiàn),乘1號車會比乘2號車到出口A用時少,請你簡要說明理由:
(4)設PA=s(0<s<800)米.若他想盡快到達出口A,根據(jù)s的大小,在等候乘1號車還是步行這兩種方式中.他該如何選擇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,垂足為F,求∠BAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com