【題目】如圖,正方形ABCD中,點(diǎn)E是AD邊的中點(diǎn),BD,CE交于點(diǎn)H,BE、AH交于點(diǎn)G,則下列結(jié)論:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正確的是( 。
A.①③B.①②③④C.①②③D.①③④
【答案】B
【解析】
根據(jù)正方形的性質(zhì)證得△BAE≌△CDE,推出∠ABE=∠DCE,可知①正確;利用正方形性質(zhì)證△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根據(jù)三角形的內(nèi)角和是180°求得∠AGE=90°即可得到②正確.根據(jù)AD∥BC,求出S△BDE=S△CDE,推出S△BDES△DEH=S△CDES△DEH,即:S△BHE=S△CHD,故③正確;由∠AHD=∠CHD,得到鄰補(bǔ)角和對頂角相等得到∠AHB=∠EHD,故④正確;
解:∵四邊形ABCD是正方形,E是AD邊上的中點(diǎn),
∴AE=DE,AB=CD,∠BAD=∠CDA=90°,
∴△BAE≌△CDE(SAS),
∴∠ABE=∠DCE,
故①正確;
∵四邊形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,DH=DH,
∴△ADH≌△CDH(SAS),
∴∠HAD=∠HCD,
∵∠ABE=∠DCE
∴∠ABE=∠HAD,
∵∠BAD=∠BAH+∠DAH=90°,
∴∠ABE+∠BAH=90°,
∴∠AGB=180°90°=90°,
∴AG⊥BE,
故②正確;
∵AD∥BC,
∴S△BDE=S△CDE,
∴S△BDES△DEH=S△CDES△DEH,
即:S△BHE=S△CHD,
故③正確;
∵△ADH≌△CDH,
∴∠AHD=∠CHD,
∴∠AHB=∠CHB,
∵∠BHC=∠DHE,
∴∠AHB=∠EHD,
故④正確;
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與△ABC在邊長為1個單位長度的小正方形網(wǎng)格中,點(diǎn)A,B,C都為網(wǎng)格線的交點(diǎn).
(1)請畫出△ABC關(guān)于直線l對稱的△A1B1C1(點(diǎn)A,B,C的對稱點(diǎn)分別為A1,B1,C1).
(2)請畫出將線段AC向左平移3個單位,再向下平移5個單位得到的線段A2C2(點(diǎn)A,C的對應(yīng)點(diǎn)分別為A2,C2),再以A2C2為斜邊畫一個等腰直角三角形A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板(△ABC)按如圖所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接寫出點(diǎn)B的坐標(biāo)是 ;
(2)如果拋物線l:y=ax2﹣ax﹣2經(jīng)過點(diǎn)B,試求拋物線l的解析式;
(3)把△ABC繞著點(diǎn)C逆時針旋轉(zhuǎn)90°后,頂點(diǎn)A的對應(yīng)點(diǎn)A1是否在拋物線l上?為什么?
(4)在x軸上方,拋物線l上是否存在一點(diǎn)P,使由點(diǎn)A,C,B,P構(gòu)成的四邊形為中心對稱圖形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,為上一點(diǎn),連接,.
(1)若,,求的長;
(2)如圖2,過作于,為上一點(diǎn),,且.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O,請用無刻度的直尺完成下列作圖.
(1)如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,且AB=AD,畫出∠BCD的角平分線;
(2)如圖②,AB和AD是⊙O的切線,切點(diǎn)分別是B、D,點(diǎn)C在⊙O上,畫出∠BCD的角平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解題時,最容易想到的方法未必是最簡單的,你可以再想一想,盡量優(yōu)化解法.
例題呈現(xiàn)
關(guān)于x的方程a(x+m)2+b=0的解是x1=1,x2=-2(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是 .
解法探討
(1)小明的思路如圖所示,請你按照他的思路解決這個問題;
小明的思路
第1步 把1、-2代入到第1個方程中求出m的值;
第2步 把m的值代入到第1個方程中求出的值;
第3步 解第2個方程.
(2)小紅仔細(xì)觀察兩個方程,她把第2個方程a(x+m+2)2+b=0中的“x+2”看作第1個方程中的“x”,則“x+2”的值為 ,從而更簡單地解決了問題.
策略運(yùn)用
(3)小明和小紅認(rèn)真思考后發(fā)現(xiàn),利用方程結(jié)構(gòu)的特點(diǎn),無需計(jì)算“根的判別式”就能輕松解決以下問題,請用他們說的方法完成解答.
已知方程 (a2-2b2)x2+(2b2-2c2)x+2c2-a2=0有兩個相等的實(shí)數(shù)根,其中a、b、c是△ABC三邊的長,判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的邊OA在x軸上,OC在y軸上,且B的坐標(biāo)為(8,6),動點(diǎn)D從B點(diǎn)出發(fā),以1個單位長度每秒的速度向C點(diǎn)運(yùn)動t秒(D不與B,C重合),連接AD,將△ABD沿AD翻折至△AB'D(B'在矩形的內(nèi)部或邊上),連接DB',DB'所在直線與AC交于點(diǎn)F,與OA所在直線交于點(diǎn)E.
(1)①當(dāng)t= 秒,B'與F重合;
②求線段CB'的取值范圍;
(2)①求EB'的長度(用含t的代數(shù)式表示),并求出t的取值范圍;
②當(dāng)t為何值時,△AEF是以AE為底的等腰三角形?并求出此時EC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究下面是小美的探究過程,請補(bǔ)充完整:
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應(yīng)值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | td style="width:28.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle"> | m | … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com