如圖,已知O是平面直角坐標系的原點,半徑為1的⊙B經(jīng)過點O,且與x、y軸分別交于點A、C,點A的坐標為(-,0),AC的延長線與⊙B的切線OD交于點D.
(1)求OC的長和∠CAO的度數(shù);
(2)求點D的坐標;
(3)求點A,O,D三點的拋物線的解析式;
(4)在(3)中,點P是拋物線上的一點,試確定點P的位置,使得△AOP的面積與△AOC的面積相等.

【答案】分析:(1)根據(jù)圓B的半徑可以求出AC的長,由點A的坐標可以求出OA的長,在Rt△AOC中由勾股定理可以求出OC的長,利用解直角三角形的特殊角的三角函數(shù)值就可以求出∠CAO的度數(shù).
(2)連接OB,過點D作DE⊥AO于E,利用(1)的結(jié)論可以求出∠DOE=60°,∠ODE=30°,由勾股定理可以求出OE、DE的長從而求得點D的坐標.
(3)設(shè)拋物線的解析式為兩根式的形式,運用待定系數(shù)法就可以求出拋物線的解析式.
(4)當存在點P時,根據(jù)底相等面積相等的兩三角形高相等就可以求出點P的縱坐標,代入拋物線的解析式就可以求出點P的坐標.
解答:解:(1)∵∠COA=90°,
∴AC為直徑.
∵⊙B的半徑為1,
∴AC=2
∵A(-,0)
∴OA=
∴cos∠CAO=
∴∠CAO=30°
∴OC=AC
∴OC=1

(2)連接OB,作DE⊥AO于E,
∴∠DEO=90°
∵DO是⊙B的切線
∴DO⊥BO
∴∠BOD=90°
∵AB=BO
∴∠CAO=∠AOB=30°
∴∠OBD=60°
∴∠BDO=30°
∴BD=2BO=2
在Rt△BOD中由勾股定理,得
DO=
∵∠DOE=∠OAD+∠ADO=60°
∴∠ODE=30°
∴OE=OD=,在Rt△ODE中,由勾股定理,得
DE=
∴D(,

(3)∵OC=1
∴C(0,1)
設(shè)拋物線的解析式為y=a(x+)(x-0),由題意,得
=a(+,解得
a=
∴y=(x+)x
y=x2+x

(4)設(shè)存在點P,使△AOP的面積與△AOC的面積相等,做PF⊥OA于F
∴這兩個三角形OA邊上的高也相等,即PF=OC=1
∴當y=1時,
1=x2+x
解得:x1=,x2=
∴P(,1)或(,1)
點評:本題是一道二次函數(shù)的綜合試題,考查了勾股定理、特殊角的三角函數(shù)值、圓的切線的性質(zhì)、直角三角形的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及函數(shù)圖象上點的存在問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系內(nèi),直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知線段AB=4,點C是平面上一點(不與A,B重合),M、N分別是線段CA,CB的中點.
(1)當C在線段AB上時,如圖,求MN的長;
(1)當C在線段AB的延長線上時,畫出圖形,并求MN長;
(2)當C在直段AB外時,畫出圖形,量一量,寫出MN的長(不寫理由)

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 北師大八年級版 2009-2010學年 第19-26期 總第175-182期 北師大版 題型:022

如圖,已知甲運動方式為:先豎直向上運動1個單位長度,再水平向右移動2個單位長度;乙運動方式為:先豎直向下運動2個單位長度,再水平向左移動3個單位長度.在平面直角坐標系內(nèi),現(xiàn)有一動點P,第一次從原點O出發(fā)按甲方式運動到點P1,第二次從點P1出發(fā)按乙方式運動到點P2,第三次從點P2出發(fā)再按甲方式運動到點P3,第四次從點P3出發(fā)在按乙方式運動到P4,…依此運動規(guī)律,則經(jīng)過第11次運動后,動點P所在位置P11的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖1,在平面直角坐標系內(nèi),直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2數(shù)學公式相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案