【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=6,AC=8, P是斜邊AB上一動點,PD⊥AC于點D,PE⊥BC于點E,則DE的長不可能是( )
A.4B.5C.6D.7
【答案】A
【解析】
連接CP,根據(jù)矩形的性質(zhì)可知:DE=CP,當(dāng)DE最小時,則CP最小,根據(jù)垂線段最短可知當(dāng)CP⊥AB時,則CP最小,再根據(jù)三角形的面積為定值即可求出CP的長,從而求出DE的最小值,再進(jìn)行判斷即可.
∵Rt△ABC中,∠C=90°,AC=8,BC=6,
∴AB=10,
連接CP,
∵PD⊥AC于點D,PE⊥CB于點E,
∴四邊形DPEC是矩形,
∴DE=CP,
當(dāng)CP最小時,則DE最小,根據(jù)垂線段最短可知當(dāng)CP⊥AB時,則CP最小,
∴,
在四個選項中,只有選項A的值小于4.8,因此,選項A符合題意,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品進(jìn)價為 70 元,當(dāng)售價定為每件 100 元時,平均每天可銷售 20 件.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價 1 元,商場平均每天可多售出 2 件.若商場規(guī)定每件商品的利潤率不低于 30%,設(shè)每件商品降價 x 元.
(1)商場日銷售量增加 件,每件商品盈利 元(用含 x 的代數(shù)式表示);
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,日盈利可達(dá)到 750 元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點P為△ABC所在平面內(nèi)一點過點P分別作PE∥AC交AB于點E,PF∥AB交BC于點D,交AC于點F.
(1)觀察猜想
如圖1,當(dāng)點P在BC邊上時,此時點P、D重合,試猜想PD,PE,PF與AB的數(shù)量關(guān)系: .
(2)類比探究
如圖2,當(dāng)點P在△ABC內(nèi)時,過點P作MN∥BC交AB于點M,交AC于點N,試寫出PD,PE,PF與AB的數(shù)量關(guān)系,并加以證明.
(3)解決問題
如圖3,當(dāng)點P在△ABC外時,若AB=6,PD=1,請直接寫出平行四邊形PEAF的周長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(+3.41)(0.59)
(2)(13)(13)
(3)20+(14)(18)13
(4)(+3)(21)+(19)+(+12)+(+5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表所示:
x | … | -1 | 0 | 2 | 4 | … |
y | … | -5 | 1 | 1 | m | … |
求:(1)這個二次函數(shù)的解析式;
(2)這個二次函數(shù)圖象的頂點坐標(biāo)及上表中m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了更好地開展球類運動,體育組決定用1600元購進(jìn)足球8個和籃球14個,并且籃球的單價比足球的單價多20元,請解答下列問題:
(1)求出足球和籃球的單價;
(2)若學(xué)校欲用不超過3240元,且不少于3200元再次購進(jìn)兩種球50個,求出有哪幾種購買方案?
(3)在(2)的條件下,若已知足球的進(jìn)價為50元,籃球的進(jìn)價為65元,則在第二次購買方案中,哪種方案商家獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某核桃種植基地計劃種植A、B兩種優(yōu)質(zhì)核桃共30畝,已知這兩種核桃的年產(chǎn)量分別為800千克/畝、1000千克/畝,收購價格分別是4.2元/千克、4元/千克.
(1)若該基地收獲兩種核桃的年總產(chǎn)量為25800千克,則A、B兩種核桃各種植了多少畝?
(2)設(shè)該基地種植A種核桃a畝,全部收購后,總收入為w元,求出w與a之間的函數(shù)關(guān)系式.若要求種植A種核桃的面積不少于B種核桃的一半,那么種植A、B兩種核桃各多少畝時,該種植基地的總收入最多?最多是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點A、B分別表示數(shù)a、b,分別計算下列情況中點A、B之間的距離:
(1)當(dāng)a=2,b=5時,AB=______;
(2)當(dāng)a=0,b=5時,AB=_____;
(3)當(dāng)a=2,b=﹣5時,AB=______;
(4)當(dāng)a=﹣2,b=﹣5時,AB=______;
(5)當(dāng)a=2,b=m時,AB=______;
(6)數(shù)軸上分別表示a和﹣2的兩點A和B之間的距離為3,a=____;
(7)點A、B分別表示數(shù)a、b,點A、B之間的距離為______;
(8)|a﹣3|+|a﹣2|的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 ①如圖(1),直線l上有2個點,則圖中有2條可用圖中字母表示的射線,有1條線段
;
②如圖(2),直線l上有3個點,則圖中有 條可用圖中字母表示的射線,有 條線段;
③如圖(3),直線l上有n個點,則圖中有 條可用圖中字母表示的射線,有 條線段;
④應(yīng)用(3)中發(fā)現(xiàn)的規(guī)律解決問題:某校七年級共有8個班進(jìn)行足球比賽,準(zhǔn)備進(jìn)行循環(huán)賽(即每兩隊之間賽一場),預(yù)計全部賽完共需 場比賽.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com