【題目】1)問題發(fā)現(xiàn)

如圖①,在RtABC中,∠A90°ABkAC,點DAB上一點,DEBC

填空:BD,CE的數(shù)量關(guān)系為   ;位置關(guān)系為   ;

2)類比探究

如圖②,將ADE繞著點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為αα≤90°),連接BDCE,請問(1)中的結(jié)論還成立嗎?若成立,請給出證明,若不成立,請說明理由.

3)拓展延伸

在(2)的條件下,將ADE繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α,直線BD,CE交于點F,若AC1,AB,當(dāng)∠ACE15°時,請直接寫出BF的長.

【答案】1)問題發(fā)現(xiàn):BDkCEBDCE;(2)類比探究:(1)中的結(jié)論還成立,理由見解析;(3)拓展延伸:BF的長為

【解析】

1)由平行線分線段成比例可得,由已知條件即可得BD=kEC;由∠A=90°即可得出BDCE;
2)通過證明△ABD∽△ACE,可得=k,即可得BD=kEC;再證出∠BFC=90°,即可得出BDCE;
3)分兩種情況討論,由相似三角形的性質(zhì)可得∠ACE=ABD,即可證∠BFC=90°,由直角三角形的性質(zhì)和勾股定理可求BF的值.

1)問題發(fā)現(xiàn):

解:∵DEBC

,

ABkAC,

BDkCE,

∵∠A90°

ABAC,

BDCE;

故答案為:BDkCEBDCE;

2)類比探究:

解:(1)中的結(jié)論還成立,理由如下:

延長CEBDF,如圖②所示:

由旋轉(zhuǎn)的性質(zhì)可知,∠BAD=∠CAE,

DEBC

,

,

∴△ABD∽△ACE,

k,∠ABD=∠ACE,

BDkEC;

∵∠CBF+BCF=∠ABD+ABC+BCF=∠ACE+BCF+ABC=∠ACB+ABC90°,

∴∠BFC90°,

BDCE;

3)拓展延伸:

解:由旋轉(zhuǎn)的性質(zhì)可知:∠BAD=∠CAE

,

∴△ABD∽△ACE,

∴∠ACE15°=∠ABD

∵∠ABC+ACB90°,

∴∠FBC+FCB90°,

∴∠BFC90°

∵∠BAC90°,AC1AB,

tanABC

∴∠ABC30°,

∴∠ACB60°,

分兩種情況:

α≤90°時,如圖②所示:

∴在RtBAC中,∠ABC30°,AC1,

BC2AC2

∵在RtBFC中,∠CBF30°+15°45°BC2,

BFCF

α90°時,如圖③所示:

設(shè)CFa,在BF上取點G,使∠BCG15°

∵∠BCF60°+15°75°,∠CBF=∠ABC﹣∠ABD30°15°15°

∴∠CFB90°,

∴∠GCF60°,∠CBF=∠BCG,

CGBG2aGFa

BFBG+GF=(2+a,

CF2+BF2BC2

a2+2a+a 222

解得:a22,

a,

BF=(2+;

即:BF的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O直徑,半徑OCAB,連接ACCAB的平分線AD分別交OC于點E,交于點D,連接CD、OD,以下三個結(jié)論:ACOD;AC2CD;線段CDCECO的比例中項,其中所有正確結(jié)論的序號是(

A.①②B.②③

C.①③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的對稱軸是x=﹣1,且過點(0),有下列結(jié)論:①abc0;②a2b+4c0;③25a+4c10b;④3b+2c0;⑤ab≥mamb);其中所有錯誤的結(jié)論有( 。﹤.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A1,1),B40),C4,4).

1)按下列要求作圖:

①將△ABC向左平移4個單位,得到△A1B1C1;

②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A2B2C2

2)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會》以賞中華詩詞,尋文化基因、品生活之美為基本宗旨,力求通過對詩詞知識的比拼及賞析,帶動全民重溫那些曾經(jīng)學(xué)過的古詩詞,分享詩詞之美,感受詩詞之趣,從古人的智慧和情懷中汲取營養(yǎng),涵養(yǎng)心靈,自開播以來深受廣大師生的喜愛,某中學(xué)為了解學(xué)校學(xué)生的詩詞水平,從八、九年級各隨機抽取了20名學(xué)生進(jìn)行了測試,并將八、九年級測試成績(百分制,單位:分)整理如下:

收集數(shù)據(jù)

八年級 93 92 84 55 85 82 66 74 88 67 87 87 67 61 87 61 78 57 72 75

九年級 68 66 79 92 86 87 61 86 90 83 90 78 70 67 53 79 86 71 61 89

整理數(shù)據(jù)按如下分?jǐn)?shù)段整理數(shù)據(jù),并補全表格:

測試成績x(分)
年級

50≤x60

60≤x70

70≤x80

80≤x90

90≤x≤100

2

4

1

5

5

6

3

說明:測試成績x(分),其中x≥80為優(yōu)秀,70≤x80為良好,60≤x70為合格,0≤x60為不合格)

分析數(shù)據(jù)補全下列表格中的統(tǒng)計量:

年級

平均數(shù)

中位數(shù)

眾數(shù)

75.9

76.5

77.1

79

86

得出結(jié)論

1)在此次測試中,有位同學(xué)的成績是78span>分,在他所在的年級屬于中等偏上,則這位同學(xué)屬于哪個年級?

2)若九年級有800名學(xué)生,估計九年級詩詞水平達(dá)到優(yōu)秀的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解方程(x2﹣12﹣5x2﹣1+4=0,我們可以將x2﹣1視為一個整體,然后設(shè)x2﹣1=y,則

x2﹣1=y2,原方程化為y2﹣5y+4=0

解得y1=1,y2=4

當(dāng)y=1時,x21=1x2=2x=±;

當(dāng)y=4時,x21=4,x2=5x=±

∴原方程的解為x1=,x2=x3=,x4=

解答問題:

1)填空:在由原方程得到方程①的過程中,利用   法達(dá)到了降次的目的,體現(xiàn)了   的數(shù)學(xué)思想.

2)解方程:x4﹣x2﹣6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的兩個交點分別為,,與軸相交于點

1)求拋物線的表達(dá)式;

2)聯(lián)結(jié),求的正切值;

3)點在拋物線上,且,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場以每件元的價格購進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量(件)與每件的銷售價(元)滿足一次函數(shù)關(guān)系.

1)求商場銷售這種商品每天的銷售利潤 (元)與每件銷售價(元)之間的函數(shù)關(guān)系式.

2)商場每天銷售這種商品的銷售利潤能否達(dá)到元?如果能,求出此時的銷售價格;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D的中點,作DEAC,交AB的延長線于點F,連接DA

(1)求證:EF為半圓O的切線;

(2)若DADF=6,求陰影區(qū)域的面積.(結(jié)果保留根號和π)

查看答案和解析>>

同步練習(xí)冊答案