如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,CD=3,CE=2.則AE的長等于( )

A.5
B.6
C.7
D.9
【答案】分析:根據(jù)等邊三角形性質(zhì)求出∠B=∠C=60°,AB=BC=AC,設AE=x,得出AB=BC=AC=x+2,BD=x-1,求出∠EDC=∠BAD,推出△BAD∽△CDE,得出比例式,求出即可.
解答:解:∵三角形ABC是等邊三角形,
∴∠B=∠C=60°,AB=BC=AC,
設AE=x,則AB=BC=AC=x+2,BD=x+2-3=x-1,
∵∠ADE=60°,
∴∠B=∠ADE,
∵∠ADC=∠B+∠BAD=∠ADE+∠EDC,
∴∠EDC=∠BAD,
∵∠B=∠C,
∴△BAD∽△CDE,
=(相似三角形的對應邊成比例),
=,
解得:x=7,
即AE=7,
故選C.
點評:本題考查了等邊三角形性質(zhì),相似三角形的性質(zhì)和判定的應用,關鍵是求出△BAD∽△CDE,題目具有一定的代表性,但有一定的難度,主要考查學生運用性質(zhì)進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案