5.一張長(zhǎng)為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個(gè)角各剪去一個(gè)邊長(zhǎng)相同的正方形后,把剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒,如圖1所示,如果折成的長(zhǎng)方體紙盒的底面積為264cm2,求剪掉的正方形紙片的邊長(zhǎng).

分析 設(shè)剪去的正方形邊長(zhǎng)為xcm,那么長(zhǎng)方體紙盒的底面的長(zhǎng)為(30-2x)cm,寬為(20-2x)cm,然后根據(jù)底面積是81cm2即可列出方程求出即可.

解答 解:設(shè)剪掉的正方形紙片的邊長(zhǎng)為x cm.
由題意,得 (30-2x)(20-2x)=264. 
整理,得  x2-25x+84=0.
解方程,得    x1=4,x2=21(不符合題意,舍去).
答:剪掉的正方形的邊長(zhǎng)為4cm.

點(diǎn)評(píng) 此題主要考查了一元二次方程的應(yīng)用,首先要注意讀懂題意,正確理解題意,然后才能利用題目的數(shù)量關(guān)系列出方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖是拋物線y1=ax2+bx+c(a≠0)的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)公共點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:
①2a-b=0;
②abc<0;
③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;
④拋物線與x軸的另一個(gè)公共點(diǎn)是(-1,0);
⑤當(dāng)1<x<4時(shí),有y2>y1;
其中正確的有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算:
(1)($\sqrt{\frac{1}{3}}$+$\sqrt{27}$)×$\sqrt{3}$.
(2)3$\sqrt{3}$-$\sqrt{8}$+$\sqrt{2}$-$\sqrt{27}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$和$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$都是方程ax+y=b的解,求a與b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.?dāng)?shù)據(jù)4,8,6,4,3的中位數(shù)是( 。
A.4B.6C.3D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示-11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱(chēng)點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問(wèn):(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,已知二次函數(shù)y=-x2+2x,當(dāng)-1<x<a時(shí),y隨x的增大而增大,則實(shí)數(shù)a的取值范圍是( 。
A.-1<a≤1B.a>1C.a<1D.a>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,在△ABC中,DE∥BC,DE分別交AB,AC于點(diǎn)D,E,若AD:DB=1:2,則△ADE與△ABC的面積之比是( 。
A.1:3B.1:4C.1:9D.1:16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某機(jī)加工車(chē)間共有26名工人,現(xiàn)要加工2100個(gè)A零件,1200個(gè)B零件,已知每人每天加工A零件30個(gè)或B零件20個(gè),問(wèn)怎樣分工才能確保同時(shí)完成兩種零件的加工任務(wù)(每人只能加工一種零件)?設(shè)安排x人加工A零件,由題意列方程得( 。
A.$\frac{2100}{30x}$=$\frac{1200}{20(26-x)}$B.$\frac{2100}{x}$×30=$\frac{1200}{26-x}$×20
C.$\frac{2100}{20x}$=$\frac{1200}{30(26-x)}$D.$\frac{2100}{x}$=$\frac{1200}{26-x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案