【題目】如圖,已知菱形的周長(zhǎng)為,兩個(gè)鄰角與的比是,則這個(gè)菱形的面積是__________.
【答案】8cm2
【解析】
過點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)菱形的性質(zhì)可得AB=AD=4,∠A=45°,再根據(jù)勾股定理可得DE=2,進(jìn)而可求菱形的面積.
如圖,過點(diǎn)D作DE⊥AB于點(diǎn)E,
∵菱形ABCD的周長(zhǎng)為16cm,
∴AB=AD=BC=DC=4(cm),
∵兩個(gè)鄰角∠A與∠B的比是1:3,
∴∠B=3∠A,
又∵∠A+∠B=180°,
∴∠A+3∠A=180°,
∴∠A=45°,
∵∠AED=90°,
∴∠ADE=45°,
在Rt△ADE中,根據(jù)勾股定理,得
AE=DE=AD=2(cm),
∴S菱形ABCD=ABDE=4×2=8(cm2 ).
故答案為:8cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為( )
A. 31° B. 28° C. 62° D. 56°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,分別探索下列四個(gè)圖形中∠P、∠A、∠C,發(fā)現(xiàn)有如下三種數(shù)量關(guān)系:∠A+∠C =∠P ;∠P+∠A =∠C ;∠P+∠C =∠A,請(qǐng)你選擇其中的兩種數(shù)量關(guān)系說明理由.
(1)我選擇的是圖 ,數(shù)量關(guān)系式是 .
理由:
(2) 我選擇的是圖 ,數(shù)量關(guān)系式是 .
理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙半徑為, 是⊙的直徑, 是⊙上一點(diǎn),連接,⊙外的一點(diǎn) 在直線上.
()若, .
①求證: 是⊙的切線.
②陰影部分的面積是__________.(結(jié)果保留)
()當(dāng)點(diǎn)在⊙上運(yùn)動(dòng)時(shí),若是⊙的切線,探究與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, △ABC三個(gè)頂點(diǎn)的位置如圖(每個(gè)小正方形的邊長(zhǎng)均為1).
(1)請(qǐng)畫出△ABC沿x軸向右平移3個(gè)單位長(zhǎng)度,再沿y軸向上平移2個(gè)單位長(zhǎng)度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法)
(2)直接寫出A′、B′、C′三點(diǎn)的坐標(biāo): A′(_____,______); B′(_____,______); C′(_____,______)。
(3)求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖7,推理填空:
(1)∵∠A =∠_____(已知),
∴AC∥ED(____________________________________);
(2)∵∠2 =∠_____(已知),
∴AC∥ED(_________________________________________);
(3)∵∠A +∠____ = 180°(已知),
∴AB∥FD(_________________________________________);
(4)∵AC∥ED(已知),
∴∠2 +∠____ = 180°(_________________________________________);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)(x―3)2=(3x+1)2 (2)x2-8x=-12
(3)3x2-4x-1=0(用配方法) (4)5x2―7x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點(diǎn)H.
(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D與點(diǎn)E分別是△ABC的邊長(zhǎng)BC、AC的中點(diǎn),△ABC的面積是20cm.
(1)求△ABD與△BEC的面積;
(2)△AOE與△BOD的面積相等嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com