【題目】下列圖形中,∠1與∠2不是同位角的是(
A.
B.
C.
D.

【答案】C
【解析】解:A圖中,∠1與∠2有一邊在同一條直線上,另一條邊在被截線的同一方,是同位角,不符合題意; B圖中,∠1與∠2有一條邊在同一條直線上,另一條邊在被截線的同一方,是同位角,不符合題意;
C圖中,∠1與∠2的兩條邊都不在同一條直線上,不是同位角,符合題意;
D圖中,∠1與∠2有一邊在同一條直線上,另一條邊在被截線的同一方,是同位角,不符合題意.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解同位角、內(nèi)錯角、同旁內(nèi)角的相關(guān)知識,掌握兩條直線被第三條直線所截形成八個角,它們構(gòu)成了同位角、內(nèi)錯角與同旁內(nèi)角;判別同位角、內(nèi)錯角或同旁內(nèi)角的關(guān)鍵是找到構(gòu)成這兩個角的“三線”,有時需要將有關(guān)的部分“抽出”或把無關(guān)的線略去不看,有時又需要把圖形補全.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥DE,∠ABC=70,∠CDE=140,則∠BCD的值為( )

A.70
B.50
C.40
D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面三個命題:①圓既是軸對稱圖形,又是中心對稱圖形;②垂直于弦的直徑平分這條弦;③相等的圓心角所對的弧相等.其中是真命題的是(
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度數(shù).有同學(xué)用了下面的方法.但由于一時犯急沒有寫完整,請你幫他添寫完整. 解:∵AD∥CB( 已知
∴∠C+∠ADC=180° (
又∵∠A=∠C (
∴∠A+∠ADC=180° (
∴AB∥CD (
∴∠BDC=∠ABD=32° ().

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,矩形ABCD的邊AD在x軸上,點A在原點,AB=3,AD=6.若矩形以每秒2個單位長度沿x軸正方向作勻速運動.同時點P從A點出發(fā)以每秒1個單位長度沿A﹣B﹣C﹣D的路線作勻速運動,當(dāng)P點運動到D點時停止運動,矩形ABCD也隨之停止運動.
(1)求P點從A點運動到D點所需的時間;
(2)設(shè)P點的運動時間為t(秒),
①當(dāng)t=8時,求出點P的坐標(biāo);
②若△OAP面積為S,試探究點P在運動過程中S與t之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程3x= x2的根為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個正方形和兩個等邊三角形的位置如圖所示,若∠1=50°,則∠2+∠3=( 。

A.190°
B.130°
C.100°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市實施“城鄉(xiāng)環(huán)境綜合治理”期間,某校組織學(xué)生開展“走出校門,服務(wù)社會”的公益活動.八年級一班王浩根據(jù)本班同學(xué)參加這次活動的情況,制作了如下的統(tǒng)計圖表:

該班學(xué)生參加各項服務(wù)的頻數(shù)、頻率統(tǒng)計表:

服務(wù)類別

頻數(shù)

頻率

文明宣傳員

4

0.08

文明勸導(dǎo)員

10

義務(wù)小警衛(wèi)

8

0.16

環(huán)境小衛(wèi)士

0.32

小小活雷鋒

12

0.24

請根據(jù)上面的統(tǒng)計圖表,解答下列問題:

(1)該班參加這次公益活動的學(xué)生共有 名;

(2)請補全頻數(shù)、頻率統(tǒng)計表和頻數(shù)分布直方圖;

(3)若八年級共有900名學(xué)生報名參加了這次公益活動,試估計參加文明勸導(dǎo)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.
(1)探究猜想: ①若∠A=20°,∠D=40°,求∠AED的度數(shù)
②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.
(2)拓展應(yīng)用: 如圖②,射線FE與l1 , l2交于分別交于點E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

同步練習(xí)冊答案