【題目】如圖,拋物線yax 2bxc的頂點(diǎn)為M1,4),與x軸的右交點(diǎn)為A,與y軸的交點(diǎn)為B,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,且SABC 3

1)求拋物線的解析式;

2)點(diǎn)Dy軸上一點(diǎn),將點(diǎn)DC點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,若點(diǎn)E恰好落在拋物線上,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);

3設(shè)拋物線的對(duì)稱軸與直線AB交于點(diǎn)F,問(wèn):在x軸上是否存在點(diǎn)P,使得以P、AF為頂點(diǎn)的三角形與△ABC相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

【答案】(1)拋物線的解析式為yx 22x3 (或?qū)戫旤c(diǎn)式 2D0,4+)或(04-);;(3P1,0P23,0

【解析】試題分析:(1)根據(jù)B、C是對(duì)稱點(diǎn)確定BC=2,然后再根據(jù)面積確定OB的長(zhǎng),從而確定出點(diǎn)B坐標(biāo),再利用待定系數(shù)法即可求得解析式;

(2)設(shè)D(0,d),然后根據(jù)旋轉(zhuǎn)的性質(zhì)確定出點(diǎn)E坐標(biāo),由點(diǎn)E在拋物線上,代入進(jìn)行求解即可得;

(3)根據(jù)題意畫出所有滿足條件的圖形,然后分情況進(jìn)行求解即可.

試題解析:(1)由題意可知對(duì)稱軸為x=1,點(diǎn)By軸上,點(diǎn)B與點(diǎn)C是對(duì)稱點(diǎn),所以BC=2,

SABC =3,所以OB3,所以點(diǎn)B0,3),

設(shè)拋物線的解析式為:y=a(x-1)2+4,

∵點(diǎn)B的坐標(biāo)為(0,3),

∴a+4=3,

∴a=-1,

∴此拋物線的解析式為:y=-(x-1)2+4=-x2+2x+3;

(2)由點(diǎn)B與點(diǎn)C是對(duì)稱點(diǎn),所以點(diǎn)C(2,3),

如圖,設(shè)點(diǎn)D(0,d),有如下兩種情況,則有BD=|3-d|,

由已知易得△CBD△CFE,∴CF=CB=2,EF=BD=|3-d|,

所以E(5-d,1),

由點(diǎn)E恰好落在拋物線上,則有:1=-(5-d-1)2+4,

解得:d=4±,

所以D(0,4+)或(0,4-);

(3)令y=0,0=-(x-1)2+4,解得:x=3x=-1,

所以A(3,0),

因?yàn)?/span>B0,3),所以OAOB,所以∠BAO=45°,AB=3

∵BC//OA,∴∠CBA=∠BAO=45°,

∵對(duì)稱軸為x=1,F1,2),AF=2 ,

如圖,若△PAFCAB,則有PACB=AFAB,PA=

OP=OA-PA=,P,0);

如圖,若△PAF△ABC,則有PA:AB=AF:BC,∴PA=6,

∴OP=PA-AO=3,∴P(-3,0),

綜上,P1,0),P2-30.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6,AD8,矩形內(nèi)一動(dòng)點(diǎn)P使得SPADS矩形ABCD,則點(diǎn)P到點(diǎn)A、D的距離之和PA+PD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司購(gòu)買了一批、型芯片,其中型芯片的單價(jià)比型芯片的單價(jià)少9元,已知該公司用3120元購(gòu)買型芯片的條數(shù)與用4200元購(gòu)買型芯片的條數(shù)相等.

(1)求該公司購(gòu)買的、型芯片的單價(jià)各是多少元?

(2)若兩種芯片共購(gòu)買了200條,且購(gòu)買的總費(fèi)用為6280元,求購(gòu)買了多少條型芯片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠EFG的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在航線的兩側(cè)分別有觀測(cè)點(diǎn)A和B,點(diǎn)A到航線的距離為2km,點(diǎn)B位于點(diǎn)A北偏東60°方向且與A相距10km處.現(xiàn)有一艘輪船從位于點(diǎn)B南偏西76°方向的C處,正沿該航線自西向東航行,5min后該輪船行至點(diǎn)A的正北方向的D處.

(1)求觀測(cè)點(diǎn)B到航線的距離;

(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù): 1.73,sin76°≈0.97,cos≈0.24,tan76°≈0.4.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某校的數(shù)學(xué)學(xué)科實(shí)踐活動(dòng)課上,老師布置的任務(wù)是對(duì)本校七年級(jí)學(xué)生零花錢使用情況進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查結(jié)果分為“A.買零食”、“B.買學(xué)習(xí)用品”、“C.玩網(wǎng)絡(luò)游戲”、“D.捐款”四項(xiàng)進(jìn)行統(tǒng)計(jì),學(xué)生將統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖(圖1、圖2),請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.

1)這次調(diào)查的學(xué)生為______人,圖2中,____________.

2)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖.

3)在圖2的扇形統(tǒng)計(jì)圖中,表示“C.玩網(wǎng)絡(luò)游戲”所在扇形的圓心角度數(shù)為______度.

4)據(jù)統(tǒng)計(jì),遼陽(yáng)市七年級(jí)約有學(xué)生12000人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)零花錢用于“D.捐款”的學(xué)生約有______人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問(wèn)題:

1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡(jiǎn));

2)由(1),你能得到怎樣的等量關(guān)系?請(qǐng)用等式表示;

3)如果圖中的abab)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形四個(gè)角上,分別剪去大小相等的等腰直角三角形,當(dāng)三角形的直角邊由小變大時(shí),陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:

三角形的直角邊長(zhǎng)/

1

2

3

4

5

6

7

8

9

10

陰影部分的面積/

398

392

382

368

350

302

272

200

(1)在這個(gè)變化過(guò)程中,自變量、因變量各是什么?

(2)請(qǐng)將上述表格補(bǔ)充完整;

(3)當(dāng)?shù)妊苯侨切蔚闹苯沁呴L(zhǎng)由增加到時(shí),陰影部分的面積是怎樣變化的?

(4)設(shè)等腰直角三角形的直角邊長(zhǎng)為,圖中陰影部分的面積為,寫出的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=60°,∠C=40°,P,Q分別在BC,CA上,AP,BQ分別是∠BAC,∠ABC的角平分線.求證:BQ+AQ=AB+BP

查看答案和解析>>

同步練習(xí)冊(cè)答案