【題目】(1)如圖,已知點C在線段AB上,AC=6cm,且BC=4cm,M、N分別是AC、BC的中點,求線段MN的長度;

(2)在(1)題中,如果其他條件不變,你能猜出MN的長度嗎?請你用一句簡潔的話表達你發(fā)現(xiàn)的規(guī)律;

(3)對于(1)題,當(dāng)點C在BA的延長線上時,且AB=其他條件不變,求MN的長度.

【答案】(1)5cm;(2)見解析;(3) .

【解析】

(1)根據(jù)線段中點的性質(zhì),可得MC、NC的長,根據(jù)線段的和差,可得答案;
(2)根據(jù)線段中點的性質(zhì),可得MC、NC的長,根據(jù)線段的和差,可得答案;(3) 根據(jù)線段中點的性質(zhì),可得MC、NC的長,根據(jù)BC=AB+AC,可得MN=.

(1)解:因為M,N分別是AC,BC的中點所以,
MC=AC=×6=3cm,
NC=BC=×4=2cm,
所以,MN=MC+NC=3+2=5(cm);
(2)解:由(1)知MC=a,NC=b,
所以,MN=MC+NC=a+b=(a+b).

規(guī)律:直線上相鄰兩線段中點間的距離為兩線段長度和的一半.

(3) 當(dāng)點C在線段BA的延長線時,如圖:

因為M,N分別是AC,BC的中點所以,

CM=AC
CN=BC
MN=CN-CM=,

BC=AB+AC,AB=m,

MN==.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級開展“光盤行動”宣傳活動,各班級參加該活動的人數(shù)統(tǒng)計結(jié)果如下表,對于這組統(tǒng)計數(shù)據(jù),下列說法中正確的是( )

班級

1班

2班

3班

4班

5班

6班

人數(shù)

52

60

62

54

58

62


A.平均數(shù)是58
B.中位數(shù)是58
C.極差是40
D.眾數(shù)是60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師想知道學(xué)生們每天在上學(xué)的路上要花多少時間,于是讓大家將每天來校上課的單程時間寫在紙上.下面是全班30名學(xué)生單程所花的時間(單位:min):

20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.

(1)用表格將上述數(shù)據(jù)加以整理;

(2)畫出學(xué)生上學(xué)單程所花時間與次數(shù)的條形統(tǒng)計圖;

(3)根據(jù)調(diào)查結(jié)果,計算每天單程20min到校的學(xué)生有多少名?占全班學(xué)生人數(shù)的百分比是多少?你認為老師還能獲得哪些信息?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)(a-b)2(a-b)3(b-a)5 (2)(a-b+c)3(b-a-c)5(a-b+c)6

(3)(b-a)m·(b-a)n-5·(a-b)5 (4)x·xm-1+x2·xm-2-3x3·xm-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 三個頂點的坐標分別為 A(1,1),B(4,2),C(3,4).

(1)請畫出ABC 向左平移 5 個單位長度后得到的A1B1C1;

(2)在 x 軸上求作一點 P,使PAB 的周長最小,請畫出PAB,并直接寫出 P 的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點C(0,4)與x軸交于點A、B,點B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點D(2,m).

(1)求二次函數(shù)的解析式并寫出D點坐標;
(2)點E是BD的中點,點Q是線段AB上一動點,當(dāng)△QBE和△ABD相似時,求點Q的坐標;
(3)拋物線與y軸交于點C,直線AD與y軸交于點F,點M為拋物線對稱軸上的動點,點N在x軸上,當(dāng)四邊形CMNF周長取最小值時,求出滿足條件的點M和點N的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上A 點對應(yīng)的數(shù)為﹣5,B 點在A 點右邊,電子螞蟻甲、乙在B分別以2個單位/秒、1個單位/秒的速度向左運動,電子螞蟻丙在A 3個單位/秒的速度向右運動.

(1)若電子螞蟻丙經(jīng)過5秒運動到C 點,求C 點表示的數(shù);

(2)若它們同時出發(fā),若丙在遇到甲后1秒遇到乙,求B 點表示的數(shù);

(3)在(2)的條件下,設(shè)它們同時出發(fā)的時間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,填空:

(1)若∠4=∠3,則_________,理由是______

(2)若∠2=∠E,則_______,理由是____;

(3)若∠A=∠ABE=180°,則_______,理由是____;

(4)若∠2=∠____,則DA∥EB,理由是____

(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣x﹣交x軸于點A,交y軸于點C,直線y=x﹣5交x軸于點B,在平面內(nèi)有一點E,其坐標為(4,),連接CB,點K是線段CB的中點,另有兩點M,N,其坐標分別為(a,0),(a+1,0).將K點先向左平移 個單位,再向上平移個單位得K′,當(dāng)以K′,E,M,N四點為頂點的四邊形周長最短時,a的值為_____

查看答案和解析>>

同步練習(xí)冊答案