(2010•盧灣區(qū)一模)已知拋物線與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C(0,-3),拋物線頂點為D,連接AD,AC,CD.
(1)求該拋物線的解析式;
(2)△ACD與△COB是否相似?如果相似,請給以證明;如果不相似,請說明理由;
(3)拋物線的對稱軸與線段AC交于點E,求△CED的面積.
【答案】分析:(1)拋物線過A,B,C三點,則這三點的坐標(biāo)適合拋物線解析式,從而求出拋物線解析式.
(2)根據(jù)拋物線的解析式,可通過配方(公式法亦可)求得D點的坐標(biāo),然后分別求出兩個三角形中六條邊的長,然后判斷它們是否對應(yīng)成比例即可.
(3)此題有兩種解法:
①由(2)證得:△ACD∽△COB,則△ACD是直角三角形,求得了直角邊AC、CD的長,即可求出△ACD的面積;然后通過比較A、E、C三點坐標(biāo),求出△AED、△CED、△ACD面積的比例關(guān)系,從而求出△CED的面積;
②先求出直線AC的解析式,聯(lián)立拋物線對稱軸可得到E點坐標(biāo),進(jìn)而可求出DE的長,以DE為底,E點橫坐標(biāo)的絕對值為高即可得到△CED的面積.
解答:解:(1)設(shè)拋物線解析式為y=ax2+bx-3(a≠0),(1分)
根據(jù)題意,得,
解得,(2分)
∴拋物線的解析式為y=x2+2x-3.(1分)

(2)相似(1分)
由y=x2+2x-3配方得y=(x+1)2-4,
∴D(-1,-4),(1分)
由兩點間距離公式得,,(2分)
又∵,BO=1,OC=3,
,
∴△ACD∽△COB.(2分)

(3)由(2)可知∠ACD=90°,
,(1分)
∵拋物線的對稱軸是x=-1,A到x=-1的距離是2,C到x=-1的距離是1,
,又S△ADC=S△CDE+S△ADE
.(1分)
點評:此題考查了二次函數(shù)解析式的確定、相似三角形的判定以及圖形面積的求法,比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市盧灣區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•盧灣區(qū)一模)已知正方形ABCD中,AB=5,E是直線BC上的一點,連接AE,過點E作EF⊥AE,交直線CD于點F.
(1)當(dāng)E點在BC邊上運動時,設(shè)線段BE的長為x,線段CF的長為y,
①求y關(guān)于x的函數(shù)解析式及其定義域;
②根據(jù)①中所得y關(guān)于x的函數(shù)圖象,求當(dāng)BE的長為何值時,線段CF最長,并求此時CF的長;
(2)當(dāng)CF的長為時,求tan∠EAF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市盧灣區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)一模)如果將拋物線y=-2x2+8向右平移a個單位后,恰好過點(3,6),那么a的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市盧灣區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)一模)若某二次函數(shù)圖象的頂點在原點,且經(jīng)過點(2,1),則此二次函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市盧灣區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)一模)拋物線y=2(x-1)2+5的頂點坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊答案