【題目】如圖,的直徑,上一點(diǎn),于點(diǎn),交于點(diǎn),交于點(diǎn)延長(zhǎng)線上一點(diǎn),且

1)求證:的切線;

2)求證:;

3)若,求的長(zhǎng).

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)欲證明BD是⊙O的切線,只要證明BDAB;
2)連接AC,證明△FCM∽△FAC即可解決問題;
3)連接BF,想辦法求出BFFM即可解決問題.

1)∵,
∴∠AFC=ABC,
又∵∠AFC=ODB
∴∠ABC=ODB,
OEBC,
∴∠BED=90°,
∴∠ODB+EBD=90°,
∴∠ABC+EBD=90°,
OBBD,
BD是⊙O的切線;
2)連接AC,


OFBC,
,,
∴∠BCF=FAC,
又∵∠CFM=AFC,
∴△FCM∽△FAC
;
3)連接BF,
AB是⊙O的直徑,且AB=10,
∴∠AFB=90°,

,

,

,
,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),拋物線yax+3)(x1)(a0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

1)求點(diǎn)A與點(diǎn)B的坐標(biāo);

2)若a,點(diǎn)M是拋物線上一動(dòng)點(diǎn),若滿足∠MAO不大于45°,求點(diǎn)M的橫坐標(biāo)m的取值范圍.

3)經(jīng)過點(diǎn)B的直線lykx+by軸正半軸交于點(diǎn)C.與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,且CD4BC.若點(diǎn)P在拋物線對(duì)稱軸上,點(diǎn)Q在拋物線上,以點(diǎn)B,D,PQ為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線My=ax2-4ax+a-1a≠0)與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),拋物線的頂點(diǎn)為D

1)拋物線M的對(duì)稱軸是直線______;

2)當(dāng)AB=2時(shí),求拋物線M的函數(shù)表達(dá)式;

3)在(2)的條件下,直線ly=kx+bk≠0)經(jīng)過拋物線的頂點(diǎn)D,直線y=n與拋物線M有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)分別記為x1,x2,直線y=n與直線l的交點(diǎn)的橫坐標(biāo)記為x3x30),若當(dāng)-2≤n≤-1時(shí),總有x1-x3x3-x20,請(qǐng)結(jié)合函數(shù)的圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長(zhǎng)是( 。

A. 2cm B. 2.5cm C. 3cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C為半圓弧上一點(diǎn),在AC上取一點(diǎn)D,使BC=CD,連結(jié)BD并延長(zhǎng)交⊙OE,連結(jié)AE,OEACF

(1)求證:△AED是等腰直角三角形;

(2)如圖1,已知⊙O的半徑為

①求的長(zhǎng);

②若DEB中點(diǎn),求BC的長(zhǎng).

(3)如圖2,若AFFD=73,且BC=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如下表:

年級(jí)

六年級(jí)

七年級(jí)

八年級(jí)

九年級(jí)

男生

250

z

254

258

女生

x

244

y

252

若從全校學(xué)生中任意抽取一名,抽到六年級(jí)女生的概率是0.12;若將各年級(jí)的男、女學(xué)生人數(shù)制成扇形統(tǒng)計(jì)圖,八年級(jí)女生對(duì)應(yīng)扇形的圓心角為44.28°.

(1)x,y,z的值;

(2)求各年級(jí)女生的平均數(shù);

(3)如果從八年級(jí)隨機(jī)抽取36名學(xué)生參加社會(huì)實(shí)踐活動(dòng),求抽到八年級(jí)某同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,點(diǎn)在邊(點(diǎn)與點(diǎn)不重合) ,過點(diǎn)于點(diǎn),連結(jié),分別為的中點(diǎn),連結(jié)

1)求證:

2的大小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).

在數(shù)學(xué)中,當(dāng)問題的條件不夠時(shí)間,常添加輔助線構(gòu)成新圖形,形成新關(guān)系,建立已知與未知的橋梁,從而把原問題轉(zhuǎn)化為易于解決的問題.在著名美籍匈牙利數(shù)學(xué)教波利亞所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個(gè)例子:試作一個(gè)三角形,使它的三邊長(zhǎng)分別是各條中線長(zhǎng)的三分之一,解決這個(gè)問題的步驟如下:

第一步,如圖1,己知的三條中線,相交于點(diǎn),則有

下面是該結(jié)論的部分證明過程:

證明:如圖1,過點(diǎn)的平分線,交的延長(zhǎng)線于點(diǎn),則

,

∵點(diǎn)的中點(diǎn),

……

第二步,同理可以證明:

第三步,如圖2,取BM的中點(diǎn),連接.的三邊長(zhǎng)分別是各條中線長(zhǎng)的三分之一.

任務(wù):(1)請(qǐng)?jiān)谏厦娴谝徊街凶C明過程的基礎(chǔ)上完成對(duì)結(jié)論的證明;

2)請(qǐng)完成第三步的結(jié)論的證明;

3)請(qǐng)直接寫出圖2的面積比:_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC中,∠ACB90°,AC4,BC2,點(diǎn)P在邊AC上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)AC不重合).以P為圓心,PA為半徑作⊙P交邊AB于點(diǎn)D、過點(diǎn)D作⊙P的切線交射線BC于點(diǎn)E(點(diǎn)E與點(diǎn)B不重合).

1)求證:BEDE;

2)若PA1.求BE的長(zhǎng);

3)在P點(diǎn)的運(yùn)動(dòng)過程中.(BE+PAPA的值是否有最大值?如果有,求出最大值;如果沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案