【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),它們離甲地的路程y(km)與客車行駛時(shí)間x(h)間的函數(shù)關(guān)系如圖,下列信息:

(1)出租車的速度為100千米/時(shí);

(2)客車的速度為60千米/時(shí);

(3)兩車相遇時(shí),客車行駛了3.75時(shí);

(4)相遇時(shí),出租車離甲地的路程為225千米.

其中正確的個(gè)數(shù)有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個(gè)小題是否正確,從而可以解答本題.

由圖象可得,

出租車的速度為:600÷6=100千米/時(shí),故(1)正確,

客車的速度為:600÷10=60千米/時(shí),故(2)正確,

兩車相遇時(shí),客車行駛時(shí)間為:600÷(100+60)=3.75(小時(shí)),故(3)正確,

相遇時(shí),出租車離甲地的路程為:60×3.75=225千米,故(4)正確,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,O的內(nèi)接四邊形ABCD兩組對(duì)邊的延長線分別交于點(diǎn)E、F

(1)若E=F時(shí),求證:ADC=ABC;

(2)若E=F=42°時(shí),求A的度數(shù);

(3)若E=α,F=β,且α≠β請(qǐng)你用含有α、β的代數(shù)式表示A的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,設(shè)D為銳角△ABC內(nèi)一點(diǎn),∠ADB=∠ACB+90°.

(1)求證:∠CAD+∠CBD=90°;

(2)如圖2,過點(diǎn)BBE⊥BD,BE=BD,連接EC,若ACBD=ADBC,

求證:△ACD∽△BCE;

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MNAB,DAB上一點(diǎn),過點(diǎn)DDEBC,交直線MN于點(diǎn)E,垂足為F,連接CD,BE

(1)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由.

(2)(1)的條件下,當(dāng)∠A=__________°時(shí),四邊形BECD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015山東省德州市,24,12分)已知拋物線y=-mx2+4x+2mx軸交于點(diǎn)Aα0), Bβ,0),且

1)求拋物線的解析式.

2)拋物線的對(duì)稱軸為l,與y軸的交點(diǎn)為C,頂點(diǎn)為D,點(diǎn)C關(guān)于l的對(duì)稱點(diǎn)為E.是否存在x軸上的點(diǎn)M、y軸上的點(diǎn)N,使四邊形DNME的周長最?若存在,請(qǐng)畫出圖形(保留作圖痕跡),并求出周長的最小值;若不存在,請(qǐng)說明理由.

3)若點(diǎn)P在拋物線上,點(diǎn)Qx軸上,當(dāng)以點(diǎn)DE、P、Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弧CDAB,垂足為H,P為弧AD上一點(diǎn),連接PA、PB,PBCDE.

(1)如圖(1)連接PC、CB,求證:∠BCP=PED;

(2)如圖(2)過點(diǎn)P作⊙O的切線交CD的延長線于點(diǎn)E,過點(diǎn)APF引垂線,垂足為G,求證:∠APG=F;

(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,運(yùn)載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于地面R處的雷達(dá)測得AR的距離是40km,仰角是30°,n秒后,火箭到達(dá)B點(diǎn),此時(shí)仰角是45°,則火箭在這n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖以正方形ABCDB點(diǎn)為坐標(biāo)原點(diǎn).BC所在直線為x軸,BA所在直線為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長為6,順次連接OA、OBOC、OD的中點(diǎn)A1、B1、C1、D1,得到正方形A1B1C1D1,再順次連接OA1、OB1、OC1、OD1的中點(diǎn)得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點(diǎn)的坐標(biāo)為(xn,yn),則xn+yn=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:已知二次函數(shù)的圖象與軸交于兩點(diǎn).交軸于點(diǎn),點(diǎn)是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn),

(1)畫出圖象,并求二次函數(shù)的解析式.

(2)根據(jù)圖象直接寫出使一次函數(shù)值大于或等于二次函數(shù)值的的取值范圍.

(3)若直線與軸交點(diǎn)為,連接,,求三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案