【題目】如圖,已知線段AB=4,延長(zhǎng)AB到點(diǎn)C,使得AB=2BC,反向延長(zhǎng)AB到點(diǎn)D,使AC=2AD.
(1)求線段CD的長(zhǎng);
(2)若Q為AB的中點(diǎn),P為線段CD上一點(diǎn),且BP=BC,求線段PQ的長(zhǎng).
【答案】(1)9;(2)1或3.
【解析】
(1)利用AB=2BC計(jì)算出BC=2,則AC=6,再利用AC=2AD得到AD=3,然后計(jì)算AC+AD得到線段CD的長(zhǎng);
(2)利用線段中點(diǎn)的定義BQ=2,BP=1,討論:當(dāng)點(diǎn)P在B、C之間時(shí),計(jì)算BP+BQ;當(dāng)點(diǎn)P在A、B之間時(shí),計(jì)算BQ﹣BP.
(1)∵AB=4,AB=2BC,
∴BC=2,
∴AC=AB+BC=6,
∵AC=2AD,
∴AD=3,
∴CD=AC+AD=6+3=9;
(2)∵Q為AB中點(diǎn),
∴BQ=AB=2,
∵BP=BC,
∴BP=1,
當(dāng)點(diǎn)P在B、C之間時(shí),PQ=BP+BQ=2+1=3;
當(dāng)點(diǎn)P在A、B之間時(shí),PQ=BQ﹣BP=2﹣1=1.
即PQ的長(zhǎng)為1或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(寫出計(jì)算過(guò)程)
(1)(-35) + 18 + (-5) + (+22)
(2)
(3)
(4)
(5)
(6)9+5×(-3)-(-2)2÷4
(7)(-22)×(-3)2+(-32)÷4;
(8)﹣32+1÷4×﹣|﹣1|×(﹣0.5)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,水平放置一個(gè)三角板和一個(gè)量角器,三角板的邊AB和量角器的直徑DE在一條直線上,∠ACB=90°,∠BAC=30°,OD=3cm,開始的時(shí)候BD=1cm,現(xiàn)在三角板以2cm/s的速度向右移動(dòng).
(1)當(dāng)點(diǎn)B于點(diǎn)O重合的時(shí)候,求三角板運(yùn)動(dòng)的時(shí)間;
(2)三角板繼續(xù)向右運(yùn)動(dòng),當(dāng)B點(diǎn)和E點(diǎn)重合時(shí),AC與半圓相切于點(diǎn)F,連接EF,如圖2所示.
①求證:EF平分∠AEC;
②求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】10個(gè)人圍成一圈做游戲.游戲的規(guī)則是:每個(gè)人心里都想一個(gè)數(shù),并把目己想的數(shù)告訴與他相鄰的兩個(gè)人,然后每個(gè)人將與他相鄰的兩個(gè)人告訴他的數(shù)的平均數(shù)報(bào)出來(lái),若報(bào)出來(lái)的數(shù)如圖所示,則報(bào)出來(lái)的數(shù)是3的人心里想的數(shù)是( )
A.2B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若,則以下四個(gè)結(jié)論中,正確的是( )
A.一定是正數(shù)B.可能是負(fù)數(shù)
C.一定是正數(shù)D.一定是正數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖1,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長(zhǎng)AF交CD于點(diǎn)G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.
(2)簡(jiǎn)單應(yīng)用:在(1)中,如果AB=4,AD=6,求DG的長(zhǎng);
(3)類比探究:如圖2,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),將線段AB先向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,得到線段CD,連接AC,BD,構(gòu)成平行四邊形ABDC.
(1)請(qǐng)寫出點(diǎn)C的坐標(biāo)為 ,點(diǎn)D的坐標(biāo)為 ,S四邊形ABDC ;
(2)點(diǎn)Q在y軸上,且S△QAB=S四邊形ABDC,求出點(diǎn)Q的坐標(biāo);
(3)如圖(2),點(diǎn)P是線段BD上任意一個(gè)點(diǎn)(不與B、D重合),連接PC、PO,試探索∠DCP、∠CPO、∠BOP之間的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過(guò)點(diǎn)A作AB⊥x軸,垂足為點(diǎn)A,過(guò)點(diǎn)C作CB⊥y軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.
(1)線段AB,BC,AC的長(zhǎng)分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.
請(qǐng)從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長(zhǎng);
②在y軸上,是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
B:①求線段DE的長(zhǎng);
②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于_________________;
(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法① __________________.方法② _____________________;
(3)觀察圖②,你能寫出(m+n)2,(m-n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系嗎?
答:________________________ .
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:若a+b=6,ab=4,則求(a-b)2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com