如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點(diǎn),拱橋最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為拱橋底部的兩點(diǎn),且DEAB,點(diǎn)E到直線AB的距離為7m,則DE的長為______m.
如圖所示,建立平面直角坐標(biāo)系.

設(shè)AB與y軸交于點(diǎn)H,
∵AB=36,
∴AH=BH=18,
由題可知:
OH=7,CH=9,
∴OC=9+7=16,
設(shè)該拋物線的解析式為:y=ax2+k,
∵頂點(diǎn)C(0,16),
∴拋物線y=ax2+16,
代入點(diǎn)(18,7)
∴7=18×18a+16,
∴7=324a+16,
∴324a=-9,
∴a=-
1
36
,
∴拋物線:y=-
1
36
x2+16,
當(dāng)y=0時(shí),0=-
1
36
x2+16,
∴-
1
36
x2=-16,
∴x2=16×36=576
∴x=±24,
∴E(24,0),D(-24,0),
∴OE=OD=24,
∴DE=OD+OE=24+24=48,
故答案為48.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),點(diǎn)A在x軸負(fù)半軸,點(diǎn)B在x軸正半軸,與y軸交于點(diǎn)C,且tan∠ACO=
1
2
,CO=BO,AB=3,求這條拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(1,0)、B(3,0)、C(0,3).
(1)試求出拋物線的解析式;
(2)問:在拋物線的對稱軸上是否存在一個(gè)點(diǎn)Q,使得△QAC的周長最小,試求出△QAC的周長的最小值,并求出點(diǎn)Q的坐標(biāo);
(3)現(xiàn)有一個(gè)動(dòng)點(diǎn)P從拋物線的頂點(diǎn)T出發(fā),在對稱軸上以1個(gè)單位長度每秒的速度向y軸的正方向運(yùn)動(dòng),試問,經(jīng)過幾秒后,△PAC是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2-k+m與x軸交于A(1,0),B(x2,0),與y軸負(fù)半軸交于點(diǎn)C,AB•OC=6,求拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面之間坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)點(diǎn)C的坐標(biāo)為______;
(2)若拋物線y=ax2+bx經(jīng)過C,A兩點(diǎn),求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點(diǎn)D,點(diǎn)P為線段DB上一點(diǎn),過P作y軸的平行線,交拋物線于點(diǎn)M,問:是否存在這樣的點(diǎn)P,使得四邊形CDPM為等腰梯形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,
(1)AC=______;
(2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)表達(dá)式為S=______.
(3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少?
(4)總面積S取最大值或最小值時(shí),點(diǎn)C在AB的什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平行四邊形ABCD中,過點(diǎn)C作CE⊥CD交AD于點(diǎn)E,將線段EC繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EF(如圖1)
(1)在圖1中畫圖探究:
①當(dāng)P1為射線CD上任意一點(diǎn)(P1不與C重合)時(shí),連接EP1;繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EG1.判斷直線FG1與直線CD的位置關(guān)系,并加以證明;
②當(dāng)P2為線段DC的延長線上任意一點(diǎn)時(shí),連接EP2,將線段EP2繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EG2.判斷直線G1G2與直線CD的位置關(guān)系,畫出圖形并直接寫出你的結(jié)論.
(2)若AD=6,tanB=
4
3
,AE=1,在①的條件下,設(shè)CP1=x,S△P1FG1=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè).他準(zhǔn)備用40m長的木欄圍一個(gè)矩形的羊圈,為了節(jié)約材料同時(shí)要使矩形的面積最大,他利用了自家房屋一面長25m的墻,設(shè)計(jì)了如圖一個(gè)矩形的羊圈.
(1)請你求出張大伯矩形羊圈的面積;
(2)請你判斷他的設(shè)計(jì)方案是否合理?如果合理,直接答合理;如果不合理又該如何設(shè)計(jì)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一個(gè)運(yùn)動(dòng)員投擲鉛球的拋物線圖,解析式為y=-
1
12
x2+
2
3
x+
5
3
(單位:米),其中A點(diǎn)為出手點(diǎn),C點(diǎn)為鉛球運(yùn)行中的最高點(diǎn),B點(diǎn)鉛球落地點(diǎn).求:
(1)出手點(diǎn)A離地面的高度;
(2)最高點(diǎn)C離地面的高度;
(3)該運(yùn)動(dòng)員的成績是多少米?

查看答案和解析>>

同步練習(xí)冊答案