【題目】為了推動全社會自覺尊法學法守法用法,促進全面依法治國,某區(qū)每年都舉辦普法知識競賽,該區(qū)某單位甲、乙兩個部門各有員工200人,要在這兩個部門中挑選一個部門代表單位參加今年的競賽,為了解這兩個部門員工對法律知識的掌握情況,進行了抽樣調查,從甲、乙兩個部門各隨機抽取20名員工,進行了法律知識測試,獲得了他們的成績(百分制),并對數據(成績)進行整理,描述和分析,下面給出了部分信息.
a.甲部門成績的頻數分布直方圖如下(數據分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部門成績如下:
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙兩部門成績的平均數、方差、中位數如下:
平均數 | 方差 | 中位數 | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年該單位參賽員工進入復賽的出線成績如下:
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出線成績(百分制) | 79 | 81 | 80 | 81 | 82 |
根據以上信息,回答下列問題:
(1)寫出表中m的值;
(2)可以推斷出選擇 部門參賽更好,理由為 ;
(3)預估(2)中部門今年參賽進入復賽的人數為 .
科目:初中數學 來源: 題型:
【題目】如圖,四邊形是菱形,,點從點出發(fā),沿運動,過點作直線的垂線,垂足為,設點運動的路程為,的面積為,則下列圖象能正確反映與之間的函數關系的是( ).
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,BC∥AD,BC=AD,點E為AD的中點,點F為AE的中點,AC⊥CD,連接BE、CE、CF.
(1)判斷四邊形ABCE的形狀,并說明理由;
(2)如果AB=4,∠D=30°,點P為BE上的動點,求△PAF的周長的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某賓館有若干間標準房,當標準房的價格為元時,每天入住的國間數為間,經市場調查表明,該賓館每間標準房的價格在元之間(含元,元)浮動時,每天人住的房間數(間)與每間標準房的價格(元)的數據如下表:
(元) | …… | 190 | 200 | 210 | 220 | …… |
(元) | …… | 65 | 60 | 55 | 50 | …… |
(1)根據所給數據在坐標系中描出相應的點,并畫出圖象.
(2)猜想(1)中的圖象是什么函數的圖象,求關于的函數表達式,并寫出自變量的取值范圍.
(3)設客房的日營業(yè)額為W (元).若不考慮其他因素,問賓館標準房的價格定為多少元時,客房的日營業(yè)額最大?最大為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,E是邊AD上的一個動點(與點A,D不重合),連接EO并延長,交BC于點F,連接BE,DF.下列說法:
① 對于任意的點E,四邊形BEDF都是平行四邊形;
② 當∠ABC>90°時,至少存在一個點E,使得四邊形BEDF是矩形;
③ 當AB<AD時,至少存在一個點E,使得是四邊形BEDF是菱形;
④ 當∠ADB=45°時,至少存在一個點E,使得是四邊形BEDF是正方形.
所有正確說法的序號是:_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,頂點坐標分別為:.線段的端點坐標為.
線段先向 平移 個單位,再向 平移_ 個單位與線段重合;
將繞點旋轉后得到的使的對應邊為直接寫出點的坐標;
寫出點在旋轉過程中所經過的路徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=100°,∠B=∠D=90°,在BC、CD上分別找一個點M、N,使△AMN的周長最小,則∠AMN+∠ANM的度數為( )
A.130°B.120°C.160°D.100°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形邊長為的網格中,的頂點,,均在格點上,為邊上的一點.
(Ⅰ)線段的值為______________;
(Ⅱ)在如圖所示的網格中,是的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017江西省)如圖1,研究發(fā)現,科學使用電腦時,望向熒光屏幕畫面的“視線角”α約為20°,而當手指接觸鍵盤時,肘部形成的“手肘角”β約為100°.圖2是其側面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.
(1)若屏幕上下寬BC=20cm,科學使用電腦時,求眼睛與屏幕的最短距離AB的長;
(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學要求的100°?
(參考數據:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結果精確到個位)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com