已知點A在x軸上,點A與點B(1,¬3)的距離是5,求點A的坐標(biāo).
【答案】分析:設(shè)點A的坐標(biāo)為(x,0),根據(jù)兩點間的距離公式列式求解即可,兩點間的距離公式:d=
解答:解:設(shè)點A的坐標(biāo)為(x,0).(1分)
根據(jù)題意,得.(2分)
∴(x-1)2=42.(1分)
∴x1=5,x2=-3.(1分)
經(jīng)檢驗:x1=5,x2=-3都是原方程的根.
∴點A的坐標(biāo)為(5,0)或(-3,0).(2分)
點評:本題考查了兩點間的距離公式,數(shù)量掌握兩點間的距離公式并熟練地解方程進行檢驗是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在直角坐標(biāo)系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設(shè)點P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點精英家教網(wǎng)P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省臺州市五校第二次聯(lián)考九年級(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知,如圖,在直角坐標(biāo)系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設(shè)點P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標(biāo)系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設(shè)點P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標(biāo)系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設(shè)點P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標(biāo)系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設(shè)點P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案