【題目】如圖,△ABC內(nèi)接于⊙O,AC為⊙O的直徑,PB是⊙O的切線,B為切點(diǎn),OP⊥BC,垂足為E,交⊙O于D,連接BD.
(1)求證:BD平分∠PBC;
(2)若⊙O的半徑為1,PD=3DE,求OE及AB的長(zhǎng).
【答案】(1)詳見解析;(2).
【解析】
試題(1)由∠PBD+∠OBD=90°,∠DBE+∠BDO=90°利用等角的余角相等即可得∠PBD=∠EBD,所以∠PBD=∠EBD;(2)利用面積法首先證明==,再證明△BEO∽△PEB,得=,即==,由此即可解決問題.
試題解析:(1)證明:連接OB.
∵PB是⊙O切線,
∴OB⊥PB,
∴∠PBO=90°,
∴∠PBD+∠OBD=90°,
∵OB=OD,
∴∠OBD=∠ODB,
∵OP⊥BC,
∴∠BED=90°,
∴∠DBE+∠BDE=90°,
∴∠PBD=∠EBD,
∴BD平分∠PBC.
(2)解:作DK⊥PB于K,
∵==,
∵BD平分∠PBE,DE⊥BE,DK⊥PB,
∴DK=DE,
∴==,
∵∠OBE+∠PBE=90°,∠PBE+∠P=90°,
∴∠OBE=∠P,∵∠OEB=∠BEP=90°,
∴△BEO∽△PEB,
∴=,
∴==,
∵BO=1,
∴OE=,
∵OE⊥BC,
∴BE=EC,∵AO=OC,
∴AB=2OE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了檢測(cè)自己實(shí)心球的訓(xùn)練情況,再一次投擲的測(cè)試中,實(shí)心球經(jīng)過的拋物線如圖所示,其中出手點(diǎn)A的坐標(biāo)為(0,),球在最高點(diǎn)B的坐標(biāo)為(3,).
(1)求拋物線的解析式;
(2)已知某市男子實(shí)心球的得分標(biāo)準(zhǔn)如表:
得分 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
擲遠(yuǎn)(米) | 8.6 | 8.3 | 8 | 7.7 | 7.3 | 6.9 | 6.5 | 6.1 | 5.8 | 5.5 | 5.2 | 4.8> | 4.4 | 4.0 | 3.5 | 3.0 |
假設(shè)小明是春谷中學(xué)九年級(jí)的男生,求小明在實(shí)心球訓(xùn)練中的得分;
(3)在小明練習(xí)實(shí)心球的正前方距離投擲點(diǎn)7米處有一個(gè)身高1.2米的小朋友在玩耍,問該小朋友是否有危險(xiǎn)(如果實(shí)心球在小孩頭頂上方飛出為安全,否則視為危險(xiǎn)),請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點(diǎn),弦PQ交CD于E,則PEEQ的值是( )
A. 24 B. 9 C. 36 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABOC是正方形,點(diǎn)A的坐標(biāo)為(1,1),是以點(diǎn)B為圓心,BA為半徑的圓;是以點(diǎn)O為圓心,OA1為半徑的圓弧,是以點(diǎn)C為圓心,CA2為半徑的圓弧,是以點(diǎn)A為圓心,AA3為半徑的圓弧,繼續(xù)以點(diǎn)B,O,C,A為圓心按上述作法得到的曲線AA1A2A3A4A5…稱為正方形的“漸開線”,則點(diǎn)A2 018的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=x2+ax+b與x軸兩個(gè)交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對(duì)稱軸為直線x=1,將此拋物線向右平移1個(gè)單位,再向下平移2個(gè)單位,得到的拋物線過點(diǎn)( 。
A. (3,6) B. (3,﹣2) C. (3,1) D. (3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中不正確的是( 。
A. c<0
B. y的最小值為負(fù)值
C. 當(dāng)x>1時(shí),y隨x的增大而減小
D. x=3是關(guān)于x的方程ax2+bx+c=0的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某景區(qū)五個(gè)景點(diǎn)A,B,C,D,E的平面示意圖,B,A在C的正東方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中點(diǎn)處.
(1)求景點(diǎn)B,E之間的距離;
(2)求景點(diǎn)B,A之間的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-5,0),B(-3,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點(diǎn)P從點(diǎn)Q(4,0)出發(fā),沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)時(shí)間t秒.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)∠BCP=15°時(shí),求t的值;
(3)以點(diǎn)P為圓心,PC為半徑的⊙P隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com