【題目】如圖1,已知拋物線yx2+mx+m1的頂點(diǎn)為D,交y軸于C點(diǎn),交x軸于A(x1,0),B(x20)兩點(diǎn),點(diǎn)Ay軸左邊,點(diǎn)By軸右邊,且AB4

1)求拋物線的解析式;

2)如圖1,APAD交拋物線于P.求點(diǎn)P的坐標(biāo);

3)如圖2,點(diǎn)HB,D之間拋物線上一點(diǎn),直線CHBDE,交x軸于F,若SCDESBEF,求H點(diǎn)的坐標(biāo).

【答案】1yx22x3;(2P(,);(3H(,﹣)

【解析】

1)由韋達(dá)定理得:x1+x2=-m,x1x2=m-1,而x2-x1=4,即:(x1+x22-4x1x2=16,即可求解;

2)如下圖,利用△AEP∽△PFE即可求解;

3)設(shè)直線CF的表達(dá)式為y=kx-3求出E、F坐標(biāo),利用由SCDE=SBEF,即可求解.

解:(1)由韋達(dá)定理得:x1+x2=﹣m,x1x2m1,

x2x14,即:(x1+x224x1x216,

解得:m=﹣2,m6(舍去),

故函數(shù)的表達(dá)式為:yx22x3

則:A(﹣1,0)、B3,0)、C0,﹣3)、D1,﹣4);

2)如下圖,過(guò)A點(diǎn)作y軸的平行線交過(guò)P點(diǎn)與x的平行線與E,交過(guò)點(diǎn)Dx軸的平行線與F,

APAD,

∴∠DAF+AEP90°,∠EPA+EAP90°,

∴∠EPA=∠DAF,

∴△AEP∽△PFE

,

設(shè)Pmm22m3

其中:PEm+1,AF4AEm22m3,FD2,代入上式,

解得:mm=﹣1(舍去),

即:P,);

3)設(shè):直線CF的表達(dá)式為ykx3…①,

直線BD的方程為:y2x6…②,

聯(lián)立①、②解得E,),F,0),

過(guò)D點(diǎn)做DMy軸,交FCH,

SCDEHMxEk3+4

SBEFBFyE3)(),

SCDESBEF,解得:k2,

則:CF的表達(dá)式為y2x3yx3…③,

將③與二次函數(shù)表達(dá)式聯(lián)立,解得:xx0(舍去),

故點(diǎn)H為(,﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣西賀州市)如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段AB,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是( 。

A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 某蛋糕店出售網(wǎng)紅奶昔包,成本為30/件,每天銷售y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,當(dāng)以40元每件出售時(shí),每天可以賣(mài)300件,當(dāng)以55元每件出售時(shí),每天可以賣(mài)150件.

1)求yx之間的函數(shù)關(guān)系式;

2)如果規(guī)定每天奶昔包的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

3)該蛋糕店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試直接寫(xiě)出該奶昔包銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),過(guò)點(diǎn)OODAB,交BC的延長(zhǎng)線于D,交AC于點(diǎn)E,FDE的中點(diǎn),連接CF

1)求證:CF是⊙O的切線.

2)若∠A22.5°,求證:CECB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,CDBC4AB1,EBC中點(diǎn),∠AED120°,則AD的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支持國(guó)家南水北調(diào)工程建設(shè),小王家由原來(lái)養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場(chǎng)調(diào)查得知,當(dāng)種植櫻桃的面積x不超過(guò)15畝時(shí),每畝可獲得利潤(rùn)y1900元;超過(guò)15畝時(shí),每畝獲得利潤(rùn)y(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過(guò)的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)

x(畝)

20

25

30

35

y(元)

1800

1700

1600

1500

1)請(qǐng)求出種植櫻桃的面積超過(guò)15畝時(shí)每畝獲得利潤(rùn)yx的函數(shù)關(guān)系式;

2)如果小王家計(jì)劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過(guò)50畝,設(shè)小王家種植x畝櫻桃所獲得的總利潤(rùn)為W元,求小王家承包多少畝荒山獲得的總利潤(rùn)最大,并求總利潤(rùn)W(元)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某民俗旅游村為接待游客住宿需要,開(kāi)設(shè)了有100張床位的旅館.當(dāng)每張床位每天收費(fèi)100元時(shí),床位可全部租出.若每張床位每天收費(fèi)提高20元,則相應(yīng)地減少了10張床位租出.如果每張床位每天以20元為單位提高收費(fèi),為使租出的床位少且租金高,那么每張床位每天最合適的收費(fèi)是(  )

A. 140 B. 150 C. 160 D. 180

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BABC,以AB為直徑的⊙O分別交ACBC于點(diǎn)D、E,BC的延長(zhǎng)線于⊙O的切線AF交于點(diǎn)F

1)求證:∠ABC2CAF;

2)若AC2CEEB14,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),若ABC的面積為SABC36cm2,則梯形EDBC的面積SEDBC為( 。

A.9B.18C.27D.30

查看答案和解析>>

同步練習(xí)冊(cè)答案