【題目】已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=

【答案】2或0
【解析】解:∵|a|=1,|b|=2,|c|=3, ∴a=±1,b=±2,c=±3,
∵a>b>c,
∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,
則a+b﹣c=2或0.
故答案為:2或0
先利用絕對值的代數(shù)意義求出a,b及c的值,再根據(jù)a>b>c,判斷得到各自的值,代入所求式子中計(jì)算即可得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,﹣4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)E(x,y)是拋物線上一動點(diǎn),且位于第一象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式;

(3)當(dāng)(2)中的平行四邊形OEAF的面積為24時(shí),請判斷平行四邊形OEAF是否為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有(

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y=的圖象在第二象限交于點(diǎn)C,CEx軸,垂足為點(diǎn)E,tanABO=,OB=4,OE=2.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過點(diǎn)D作DFy軸,垂足為點(diǎn)F,連接OD、BF,如果SBAF=4SDFO,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點(diǎn)P(a,b)在第三象限,則點(diǎn)Q(-a,-b)在第________象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x2﹣2x﹣5=0時(shí),原方程應(yīng)變形為(
A.(x+1)2=6
B.(x+2)2=9
C.(x﹣1)2=6
D.(x﹣2)2=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ΔABC中,∠B =∠C,BD=CF,BE=CD,∠EDF=α,則下列結(jié)論正確的是( )

A. 2α+∠A=90° B. 2α+∠A=180°

C. α+∠A=90° D. α+∠A=180°

查看答案和解析>>

同步練習(xí)冊答案